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巻頭言 

 

放射線治療の未来を切り開くために～臨床と研究の課題と展望～ 

 

徳島大学大学院 佐々木幹治 

 

このたび，前任の辰己大作先生より放射線治療部会長を拝命いたしました，徳島大学大学

院の佐々木幹治と申します． 

辰己先生には，コロナ禍という困難な状況下においても本部会の発展に尽力され，とりわ

け「放射線治療の立ち上げ」や「実践 IGRT」などをテーマとしたオンラインセミナーの推

進において，数多くの成果を挙げられました．そのご尽力により，現在の放射線治療部会の

発展が築かれ，今後の活動に向けても活用できる貴重な基盤が整備されたことに，心より感

謝申し上げます． 

放射線治療は，近年の技術的進歩に支えられ，がん治療の中核を担う領域として着実な発

展を遂げてきました．画像誘導技術の進化や高精度照射法の普及，AI・機械学習を活用した

治療計画の最適化，さらにはゲノム情報や臨床データを統合したオミックス解析による予

後予測の応用など，臨床と技術の両面において目覚ましい進展を実感しています． 

一方で，現場ではマンパワーの不足，業務の複雑化，そして治療の標準化と個別化の狭間

における意思決定の難しさなど，日々の診療において解決すべき課題も数多く存在します． 

こうした課題を克服し，放射線治療の質をさらに高めていくためには，臨床に根ざした実

践的な知見と，学術的根拠に基づく研究とが密接に連携していくことが不可欠であると考

えております．例えば，治療技術の臨床応用や装置の開発，線量分布の最適化，リスク臓器

への線量低減に関する解析，さらには患者治療成績に基づく治療指標の確立など，研究領域

には今後も多くの可能性と挑戦が広がっています． 

本部会では，こうした多様な課題に対し，分野横断的な視点から情報と知見を共有し，臨

床・研究の双方に資する議論を展開する場として運営してまいります．今後も，医師，医学

物理士，診療放射線技師，研究者など多職種が一体となって学び合い，共に考えることので

きる「開かれた放射線治療部会」を目指して活動を継続してまいります．そのために，職種

の垣根を越えて意見交換できる風通しのよい場づくりを大切にし，セミナーに加えて，日常

診療での工夫や悩みを共有できるような情報交換会などの交流の機会も積極的に取り入れ

ていきたいと考えています． 

本部会の雑誌が，会員の皆さまにとって新たな気づきや刺激を得るきっかけとなり，放射

線治療のさらなる発展に向けた一助となれば幸いです． 

最後になりますが，日頃よりご支援くださっている放射線治療部会委員の皆さま，ならび

に本部会の運営にご尽力いただいているすべての関係者の皆さまに，心より感謝申し上げ，

ご挨拶とさせていただきます． 
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新任挨拶 

治療部会委員に着任して 

弘前大学医学部附属病院 小原 秀樹 

 

今年度より，東北地区の放射線治療部会委員を拝命いたしました，弘前大学医学部附属病

院の小原秀樹と申します．私は弘前大学を卒業後，一貫して弘前大学病院に勤務しており，

本年度でちょうど勤続 20年目を迎えます．放射線治療室には 1年目の終り頃からローテー

タとして配属され，途中診断部門を数年経験しまして，現在は治療専属として勤務しており

ます．放射線治療においては，広く深い知識や技術，日進月歩の装置や機器，治療スタッフ

とのチームワーク，そして患者様からの感謝の声など，多くの「面白さ」を感じながら，今

日まで継続しております．また，放射線部門の同僚をはじめ，放射線治療に携わる多くのス

タッフや，東北・新潟地域の皆様との出会いとご指導が，私の基盤を築いてくださったこと

に深く感謝しております．さらに，弘前大学の卒業生たちと学会や研究会にて企画を立案・

実行する中で，人とのつながりの大切さを実感しております． 

 放射線治療部会への参画のきっかけは，昨年の春頃に山形大学医学部附属病院の鈴木幸

二先生からお声がけいただいたことでした．率直に申し上げて，過不足なく私に務まるか迷

いがありましたが，自身の挑戦として，また放射線治療業務と人材育成に少しでも貢献でき

ればとの思いから，委員就任を決意いたしました．微力ながらも皆様と力を合わせ，本部会

の活動を通じて放射線治療のさらなる質の向上につながればと思います．また，治療部会長

の佐々木先生をはじめ，委員の先生方と連携しながら，部会活動に真摯に取り組んでまいり

ます．今後とも，何卒よろしくお願い申し上げます． 
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新任挨拶 

委員就任にあたり 

 広島大学病院 津田 信太朗 

 

この度，中国・四国地区の放射線治療部会委員を拝命いたしました，広島大学病院の

津田信太朗と申します．どうぞよろしくお願いいたします． 

 私は 2008 年に広島大学病院に入職しました．配置の都合もあり，学生時代から興味

のあった放射線治療に 1年目から従事し，現在に至ります．当時は全国的に IMRT が導

入され始めた時期で，幸運にも IMRT のコミッショニングに携わる機会をいただきまし

た．また，マージン算出式が注目されていた時代で，患者群の Σ や σ のことを考えて夜

眠れなかった記憶がございます．位置照合も現在のように画像を重ね合わせる Fusion技

術やカウチの遠隔操作は普及しておらず，当時は DRR とリニアックグラフィを左右並

べ，スケールの目盛りを基準に見比べ「う～ん，Right 4，Out 2 mm！」と，瞬時に目視

で判断してリニアック室内に走ってカウチを間違えずに手動で動かしており，現在の

IGRT システムの完成度の高さを，身をもって実感しております． 

また，2015 年より 3 年間，広島がん高精度放射線治療センターの開設で出向いたし

ました．治療施設の立ち上げから，組織ビルディングに至るまで，多くの貴重な経験を

させていただきました．人と人とが仕事をする上でコンフリクトは避けられませんが，

それを逆手にとり，職種を問わず，スタッフが様々なバックグラウンドを持つという強

みをどう生かすか．チーム医療の本質を考えさせられました． 

これまで西日本を中心に多くの地域の勉強会や研究会に参加させていただき，広く深

く学ばせていただきました．この場をお借りして深くお礼申し上げますとともに，ご恩

を少しずつでもお返ししていければと心より願っております．全国の数多の諸先輩方の

背中を見ながら歩んできましたが，この度，私がこのような重責を果たせるのか，不安

も多く，まだまだ未熟者ではございますが，皆様と共に修練を重ね，放射線治療のさら

なる発展，そして明るい未来に微力ながら貢献できれば幸いです． 
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第 90 回放射線治療部会開催案内 
 

 

教育講演［放射線治療部会］10 月 19 日（日）9：00～10：00（第 1会場_特別会議場） 

司会 徳島大学 佐々木幹治 

 

「体幹部高精度放射線治療における呼吸性移動対策の臨床的意義」   

北海道大学大学院医学研究院 加藤 徳雄 

   

第 90 回放射線治療部会 10 月 19 日（日）10：00～12：00（第 1会場_特別会議場） 

シンポジウム「呼吸性移動対策の再考」 

   司会 茨城県立中央病院 篠田 和哉 

 司会 広島大学病院 津田信太朗 

 

① RGSC編 大阪国際がんセンタ－ 新田 雄也 

② Abches編  山梨大学医学部附属病院 上田 幸治 

③ SyncTrax編  北海道大学病院 若林  倭 

④ Radixact Synchrony編  磐田市立総合病院 三浦 正稔 

⑤ Vero編  広島がん高精度放射線治療センタ－ 三浦 英治 

 
 

専門部会講座 入門編   10 月 17 日（金） 13：30～14：20 （第 7会場_小ホール） 

司会 がん研究会有明病院 中島  大 

 

  「診断参考レベルの基礎から DRLs2025の概要」         順天堂大学 坂本  肇 

 

専門部会講座 専門編   10 月 18 日（土） 9：00～9：50 （第 7会場_小ホール） 

 司会 弘前大学医学部附属病院 小原 秀樹 

 

  「粒子線治療の現在と未来」          北海道大学病院 松尾 勇斗 
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☆その他 放射線治療関連プログラム 
 

 

実行委員会企画 3 10 月 18 日（土）10：40～12：00（第 9会場_会議室 206） 

座長 北海道大学病院 松尾 勇斗 

座長 福島県立医科大学 加藤 貴弘 

「北海道発，がん治療最前線 ～陽子線治療の挑戦と地域貢献～」 

 

教育講演「がん治療の未来を切り開く陽子線治療 ～北海道での実績と次なるステップ～」 

札幌禎心会病院 髙木  克 

地域に貢献する陽子線がん治療 ～当院の体制と取組み～ 

札幌孝仁会記念病院 中村 大隆 

地域医療を支える北海道大学病院の陽子線治療の実際 

北海道大学病院 田村 弘詞 

総合討論 

 

 

 

実行委員会企画 5 10 月 19 日（日）9：00～12：00 （第 8会場_会議室 204） 

座長 帯広厚生病院 中村 俊一 

座長 北海道大学病院 佐藤 恵美 

「札幌から始まる技師がつなぐ乳がん診療 ～診断から治療まで～」 

マンモグラフィ 

札幌医科大学附属病院 杉本 晴美 

超音波 

帯広厚生病院 北口 一也 

MRI 

市立旭川病院 福田 泰之 

放射線治療 

斗南病院 奈良 一志 

 

 

 

第 97 回画像部会 10 月 18 日（土）15：10～17：10（第 3会場_大ホール C） 

シンポジウム 

司会 神戸常盤大学 山崎明日美 

司会 小倉記念病院 佐保 辰典 

「放射線診療業務を支える AI研究」 

業務効率の向上を目指した放射線技術支援システムの研究 

日本文理大学 衞藤 路弘 

胸部 X線撮影の吸気状態に着目した再撮影自動判定 

信州大学医学部附属病院 松原 尚輝 

頭頚部 3D-CTA撮影補助のための画像変換 AI研究  

市立四日市病院 倉谷 洋佑 

放射線治療×AIの研究 

九州大学病院 廣瀬 貴章 
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― 第 90回（札幌市）放射線治療部会 シンポジウム － 

 

『呼吸性移動対策の再考』 

座長集約 

 

茨城県立中央病院  篠田 和哉 

 広島大学病院  津田 信太朗 

 

 本シンポジウムでは、「呼吸性移動対策の再考」をテ

ーマに、改めてこの重要課題に向き合います。奇しく

も 10年前、同様のテーマで議論がなされました[1]が、

この 10 年間で我々を取り巻く技術は大きく進化を遂

げました。（10年前のプログラム：左図） 

高精度放射線治療の普及とともに、呼吸性移動に起

因する照射誤差の影響は一層深刻な問題となってお

り、それに対応するための技術開発も加速しています。

4DCTをはじめとした時間軸を考慮した画像技術、リ

アルタイムモニタリングや自動位置補正技術の進化、

さらには AIを活用した動体予測など、これらの進歩

は、かつては困難とされていた呼吸性移動の管理をよ

り現実的なものに変えつつあります。 

 

本シンポジウムでは、過去を振り返るとともに、現在の技術がどこまで臨床を変えうるのか、そ

して今後何を目指すべきかを多角的に議論していきます。参加される皆様には、最新の知見を共

有し、臨床の現場での最適な呼吸性移動対策について改めて考える契機としていただければ幸い

です。 

 

 

参考文献 

1) 日本放射線技術学会放射線治療部会誌 2015 年 4月発行 Vol.29. No.1. http://rt.jsrt.or.jp/rt_vol29-

1.pdf 

 

第 69回放射線治療分科会(10年前)のプログラム 
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― 第 90回（札幌市）放射線治療部会 シンポジウム － 

 

『呼吸性移動対策の再考』 

RGSC編 

 

大阪国際がんセンター  新田 雄也 

本講演では，Varian社製の呼吸同期システム「RGSC（Respiratory Gating for Scanners）」を用い

た呼吸性移動対策照射に関する，当施設での取り組みを紹介する．具体的には，技術的および

臨床的な進化の経緯，臨床現場における運用例と工夫，および直面している課題について述べ

る． 

当施設における呼吸性移動対策照射のワークフローを図１に示す．当施設では，「腹部圧迫照

射」「呼吸同期照射」「息止め照射」の 3種類の方法を採用している．まず，医師が診察時に

呼吸同期照射または息止め照射の必要性を判断し，次に放射線技師が呼吸トレーニングを実施

して，患者が当該照射法に対応可能かを評価したうえで，最終的な照射方法を決定している．

呼吸トレーニングの結果，呼吸同期または息止め照射の実施が困難と判断された場合には，医

師と協議のうえ，腹部圧迫下または自由呼吸下での照射へと切り替える．また，金属マーカー

を体内に留置している患者に対しては，照射前にリニアック上で検出可能かを確認するため，

事前にリハーサルを実施している． 

 

 

 

 

 

 

図 1.呼吸性移動対策照射のワークフロー 

呼吸性移動対策照射は，呼吸性移動を伴う腫瘍に対して線量を損なうことなく，正常組織への

線量を低減させるうえで不可欠な技術である．一方で，従来の放射線治療と比べて，準備・計

画から照射に至るまで，各ステップで確認すべき項目が多く，全体のワークフローは複雑化す

る傾向にある．本講演を通じて，呼吸性移動対策照射の実践における具体的な工夫や課題を共

有し，今後の放射線治療の質向上に寄与することを期待する． 
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― 第 90回（札幌市）放射線治療部会 シンポジウム － 

 

呼吸性移動対策の再考 

Abches編 

 

山梨大学医学部附属病院  上田 幸治 

 

呼吸性移動対策は SBRT で 95％，通常の IMRT や通常照射でも 5 割以上の施設で実施されてお

り，Abchesは呼吸性移動対策装置として現在国内での高いシェアがある．（2023 年度 JASTRO 高

精度放射線外部照射部会 IMRT/SBRT 実態調査） 

 

Abchesの特徴を以下に挙げる． 

 

1. 胸郭および腹壁の変動を検出する胸腹 2 点式呼吸モニタリング装置であり，簡便に呼吸性移

動対策を行える 

2. 電源を必要としない非電子式の運用も可能（置くだけで定量的な呼吸インジケータになる） 

3. 鏡やモニタ（吸気量の針）を見せたバイオフィードバックメカニズムを活用 

4. 自己息止めという患者参加型の息止め 

5. 構造がシンプルであり誤差や誤動作が生じにくい（simple is the best） 

6. 呼吸波形等の呼吸性移動対策加算の請求に必要な記録が可能 

 

ここ 10 年の進歩としては，治療装置や CT との連携が可能となり，呼吸同期照射や 4D-CT の撮

影も可能となった．本講演では、Abches開発元として，開発から現在に至るまでの経緯，品質管

理，臨床で苦労する点や行っている対策等について共有させていただく． 
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― 第 90回（札幌市）放射線治療部会 シンポジウム － 

 

『呼吸性移動対策の再考』 

SyncTrax 編 

 

北海道大学病院  若林 倭 

 

北海道大学病院では，放射線治療における呼吸性移動対策として SyncTraX FX4（島津製作所）を

使用している．本システムは腫瘍近傍に挿入した金属マーカーを 2方向の X 線透視でリアルタイ

ムに追跡し，設定範囲内にマーカーが位置する場合のみ照射を行う（迎撃法）．自然呼気相のみ

での照射のため，通常の治療よりも治療時間が延長するという課題があったが，VMAT（Volumetric 

Modulated Arc Therapy）や FFF（Flattening Filter Free）による高線量率照射に対応し，短時間での

治療が可能となった．本講演では，こうした装置の進化に触れ，当院での具体的な運用方法や苦

労した事例を共有するとともに，SyncTraX FX4 を用いた呼吸性移動対策の将来的な展望について

も考察したい． 
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― 第 90 回（札幌市）放射線治療部会 シンポジウム － 

 

『呼吸性移動対策の再考』 

Radixact Synchrony 編 

 

磐田市立総合病院  三浦 正稔 

 

呼吸性移動を伴う腫瘍に対する放射線治療では，照射位置の誤差が治療精度に大きく影響する

ため，その補正は臨床上の重要な課題である．この課題に対処するため，近年，各メーカーから

さまざまな補正技術が提案されている．なかでも Accuray 社の Synchrony は，動体に対する照射

位置をリアルタイムに補正可能な数少ないシステムの一つであり，いわゆるリアルタイム適応放

射線治療（Real-time Adaptive Radiotherapy）に分類される． 

この Synchronyは，kV-X 線画像から取得される腫瘍位置（体内情報）と，患者体表に装着され

た LED マーカーから得られる呼吸波形信号（体外情報）を組み合わせて相関モデルを構築する．

このモデルに基づき，リアルタイムで取得される呼吸波形から腫瘍位置を予測し，照射位置を動

体に同期させることで，動体追尾照射を実現している．相関モデルは治療中も継続的に更新され

るため，腫瘍位置の変化にも柔軟に対応でき，患者は自然な呼吸を維持したまま，負担の少ない

治療を受けることが可能である． 

同社が開発した Radixact は，TomoTherapy の後継機であり，バイナリ MLC を用いたヘリカル

照射による強度変調放射線治療（IMRT）を基本とするが，この Radixactに Synchronyを適用する

ことで，動きを伴うターゲットに対してもリアルタイムな照射位置補正が可能となっている． 

Synchrony はもともと CyberKnife に搭載されていた動体追尾技術であり，その基本原理は

Radixact にも継承されている．ただし，両者は装置構造が大きく異なるため，実装方法にも顕著

な違いがある．CyberKnife では，治療室内に設置された直交二方向の kV-X 線イメージングシス

テムによる同時撮影により腫瘍の 3次元位置を特定し，呼吸波形との相関モデルを構築する．照

射はロボットアームの動的制御によって，予測された腫瘍位置に同期させて行われる． 

一方，Radixact では，ガントリに搭載された単一の kV-X 線イメージングシステムを用いて，

ガントリ回転中に多方向から X 線画像を定期的に取得し，それらの画像から検出された腫瘍の 2

次元位置と呼吸波形との相関をもとに，腫瘍の 3 次元位置を推定する．このように，3 次元位置

を直接取得するのではなく，2 次元位置と呼吸信号との関係から位置を推定している点が特徴で

ある．照射位置の補正は，Jaw の動的制御とバイナリ MLC のリーフパターンシフトによって行

われ，予測された腫瘍位置に追従する形で照射が実施される． 

本シンポジウムでは，Radixact Synchronyによる動体追尾照射技術の臨床応用について，当院で

の運用経験をもとに，位置補正機構の特徴やワークフロー，臨床での工夫，安全管理上の教訓，

さらに最近の研究成果や今後の課題について紹介する． 
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― 第 90 回（札幌市）放射線治療部会 シンポジウム － 

 

『呼吸性移動対策の再考』 

Vero編 

 

広島がん高精度放射線治療センター  三浦 英治 

 

動体追尾照射は，呼吸や生理的な運動によって体内で動く腫瘍の位置をリアルタイムで把握し，

それに合わせて放射線の照射位置を自動的に調整する高度な放射線治療技術です．本講演では，

リング型ガントリー構造および高精度イメージガイダンス機能を備えた「Vero4DRT」に焦点を当

て，装置の特徴，その長所と短所，そして動体追尾照射に必要な考え方について解説します． 

 

Vero4DRTの特徴 

・リング型ガントリー構造 

従来のリニアックとは異なり，治療台（テーブル）を回転させることなく，多様なガントリー角

度から照射が可能です． 

 

・動体追尾機能（リアルタイムモニタリング） 

X線透視画像および赤外線マーカーなどの画像誘導機能を活用し，呼吸によって動く腫瘍を治療

中に追尾しながら照射することができます． 

 

・動体追尾機能により腫瘍の位置変動にリアルタイムで対応できるため，PTVマージンの縮小が

可能となり正常組織への線量を低減できる． 

 

・高度な技術の導入により，各種品質保証（QA）および専門的な知識が必要である． 

 

動体追尾照射に必要な考え方 

・呼吸性移動の評価など 

患者ごとの特性を事前に把握し，リハーサルなど十分な準備が不可欠です． 

 

・マーカー留置および画像誘導の最適化 

動体追尾の精度はマーカーの設置位置に依存するため，最適な手法の選択が求められる． 
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－ 第 90回（札幌市）放射線治療部会 専門部会講座(治療)入門編 － 

 

診断参考レベルの基礎から DRLs2025の概要 
 

 

 

順天堂大学  坂本 肇 

 

診断参考レベル（diagnostic reference levels：DRL）は ICRP（international commission on radiological 

protection） Publication 73 にて導入され，放射線防護の最適化のツールとして多くの国で導入さ

れ，本邦では 2015 年に DRLs2015 が設定された．当初から DRLの定義にて診断領域 X 線検査に

適応され，放射線治療領域は適応外であった．このため，放射線治療を専門に行っている診療放

射線技師にとって DRLは馴染みが薄いと考える．しかし，DRLs2025 において 5項目（脳腫瘍定

位放射線治療，頭頸部腫瘍強度変調放射線治療，肺癌定位放射線治療，乳癌術後接線照射，局所

前立腺癌強度変調放射線治療）の治療計画 CT の DRL 値が設定されたことにより放射線治療領

域においても DRL を活用し，治療計画の目的に寄与しない患者への線量を回避し，合理的に達

成できる限り低い被ばく線量による放射線防護の最適化が求められている． 

 そこで，本入門編では DRLのこれまでの流れ，基本的な考え方，DRLs2025 の概要などを解説

し，DRLの周知と理解，その活用に役立てていただければ幸いである． 
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－ 第 90回（札幌市）放射線治療部会 専門部会講座(治療)専門編 － 

 

粒子線治療の現在と未来 
 

 

 

北海道大学病院  松尾 勇斗 

 

粒子線治療は，放射線治療における高精度治療技術として世界的にその普及が進んでおり，国内で

も導入施設の増加とともに，その臨床的役割が拡大しつつある．本講演では，陽子線と重粒子線それ

ぞれの物理的特性（Bragg peakや線量集中性など）および適応疾患の傾向といった臨床応用上の違い

を整理し，現場に携わる放射線技師として理解しておくべき基礎的事項を概説する． 

近年では，LET（線エネルギー付与）の臨床的意義が注目されており，特に dose-averaged LET（線

量加重平均 LET）の空間的な分布の可視化や，それを考慮した治療計画の最適化に向けた技術開発が

進展している．また，FLASH照射（40 Gy/sec以上の超高線量率）や Proton Arc照射といった革新的な

治療手法の研究も活発化しており，将来的な臨床実装が期待される．さらに，画像誘導技術や呼吸同

期技術の進化とともに，適応放射線治療（Adaptive Radiation Therapy）が X線治療を先駆けとして臨床

応用され始めており，粒子線治療分野においても今後の展開が注目されている．これに伴い，照射業

務の現場では，放射線技師に対してこれまで以上に迅速な判断力や柔軟な対応力が求められる時代と

なっている． 

本講演では，これらの最新技術的トピックを論文ベースで紹介しつつ，粒子線治療の「現在」と「未

来」を多角的に展望する．また，放射線技師としてこの分野にどのように関わり，今後どのような知

識やスキルが必要とされるのかについて考察する． 
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AI⼊⾨
〜AIを医療・研究で使う上で
知っておくべきこと〜

熊本⼤学 諸岡健⼀

第81回⽇本放射線技術学会総会学術⼤会 教育講演
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第81回⽇本放射線技術学会総会学術⼤会

この研究発表の内容に関する利益相反事項は，
ありません

熊本⼤学 諸岡健⼀

2
Ku

m
am

ot
o 

Un
iv

. I
nt

el
lig

en
t M

ed
ic

al
 Im

ag
e 

M
ed

ia
 L

ab
or

at
or

y

画像 ✕ ３次元形状 ✕ AIによる
医療・看護・福祉に関わるヒトを⽀援するシステム

3

⼈体 医療⽀援
システム

３次元臓器モデル

医療画像情報処理

コンピュータ内で物体を扱うのに
必要な物体に関する情報

p 表⾯
p 内部構造
p 動作や成⻑

p 画像処理
p ⼈⼯知能
p 仮想・複合現実
p etc..
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共同研究歴
4

放射線科
眼科
脳外科
矯正⻭科
消化器外科
泌尿器科
⼼臓⾎管内科
整形外科
⼩児科
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医療 ✕ AI
5

診断

放射線治療
穿刺治療
外科⼿術

リハビリテーション
⽣存率推定
再発予測

臓器・筋⾻格抽出
腫瘍検出

発病予測
不整脈予測
Radiomics
Radiogenomics

治療

予防 回復

Ku
m

am
ot

o 
Un

iv
. I

nt
el

lig
en

t M
ed

ic
al

 Im
ag

e 
M

ed
ia

 L
ab

or
at

or
y

n 上咽頭がん（Nasopharyngeal carcinoma：NPC）
ü 頭頸部における癌
ü 遺伝的要因
ü 環境などの外的要因

中国・東南アジア・北アフリカなど

n NPCの進⾏度

CNNによるCT画像からの上咽頭がん検出

NPC

Cancer

Stage T1

Cancer

Stage T2

Cancer

Stage T3

Cancer

Stage T4 
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CNNによるCT画像からの上咽頭がん検出
n NPCと周囲の組織の輝度値が類似

⇒直接NPCを検出するのは困難

n Cascade戦略を導⼊
1. NPCが含まれない領域を抽出し，その領域をCT画像から除去
2. 残った領域からNPCを抽出

7

CT画像

NPCが含まれない領域

ー

CNN

CNN

NPC

[ CMIG’19 ]

Axial image

Coronal image

Sagittal image

Integration 
process

Detection of non-target 
organ region Detection of NPC
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実験結果
n NPCの検出結果（axial）

Matching regionsObtained NPC regions Non-matching regions

Ours vs MC

DDNN vs MC WCNN vs MC U-net vs MC U-net2 vs MC

提案⼿法により
検出した領域

⾚＋⻩＝

真値⻩＋緑＝

⻩：⼤，緑・⾚：⼩
が望ましい結果

[ CMIG’19 ]
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強度変調放射線治療（IMRT）⽀援システム
n ７⽅向からの放射線照射による線量分布を推定するネットワーク

OTNetを開発

9

Final dose 
distribution

Dose distribution 
image from beam1

Dose distribution 
image from beam7

Network1
OTNet1

Network7
OTNet7

Contoured 
CT image

Beam 1

Contoured
CT image

Beam 7

[ Artificial Intelligence in Radiation Therapy @MICCAI’19, ICIEV and ICIVPR’20 ] Ku
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医療AIシステム
10

シングルモーダル & 教師あり学習

画像 予め定義
された出⼒

正常
or
腫瘍

腫瘍
検出

マルチモーダル & 教師あり学習
画像

予め定義
された出⼒

⽣体データ
• 遺伝⼦
• ⼼電図

テキスト
• カルテ
• ⼿術メモ

プロンプト
新たなコンテンツ

キーワードから関連性がある
組み合わせを推定

AIシステムに与える
指⽰⽂や質問⽂

⽣成AI

プロンプト
新たなコンテンツ

キーワードから関連性がある
組み合わせを推定

「CT image of lung」

AIシステムに与える
指⽰⽂や質問⽂

Stable diffusion

⽣成AI
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⼤規模⾔語モデル（LLM）の医療応⽤
n 東北⼤＆NEC，恵寿総合病院 ＆ Ubie

11

[ https://www.tohoku.ac.jp/japanese/newimg/pressimg/tohokuuniv-press20231213_01web_llm.pdf ] Ku
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AIと医療の関わり
12

フェーズ１
所有するデータを，公開されているAIシステムに適⽤

フェーズ２
データ・知⾒を提供し，開発者が新しい
AIシステムを開発

フェーズ３
データ収集からAIシステム開発まで全て実施
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AI ‒ 機械学習 ‒ 深層学習
13

[ nVIDIA Blogより ]

2020’s

⽣成AI
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n 脳の神経細胞

ヒト脳の情報処理

樹状突起
細胞体

軸索

シナプス
電気信号

軸索
シナプス結合

⼊⼒側神経細胞

出⼒側
神経細胞
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n 脳の神経細胞

ヒト脳の情報処理

樹状突起
細胞体

軸索

シナプス
電気信号

シナプス結合

⼊⼒側神経細胞

出⼒側
神経細胞

出⼒側から受け取る総電気信号量が
ある閾値を超えると，

⼊⼒側で電気信号を発⽣

電気パルス

神経細胞の機能を数理モデル（＝数式）で表現し，
計算機上で再現するか？

⇓
⼈⼯ニューラルネットワーク

（Artificial Neural Network）

Ku
m

am
ot

o 
Un

iv
. I

nt
el

lig
en

t M
ed

ic
al

 Im
ag

e 
M

ed
ia

 L
ab

or
at

or
y

神経細胞の機能のモデル化
n 形式ニューロン（McCulloch & Pitts, 1943）

閾値
q

⼊⼒

…

神経細胞
（ニューロン）

x1

xn

x2
x3

w1

wn

出⼒信号：
o = f (z - q )

!
=

!

"
"" #$

!
z =

活性化関数（伝達関数）

シナプス結合荷重
＝信号の伝わり⽅を決定

n シグモイド関数
f (u)

u
0 (e : 定数)

1
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ニューラルネットワークの学習
n 学習データ＝⼊⼒信号と教師信号の組

n 学習の⽬的
⼊⼒信号が与えられると、教師信号を出⼒するように、
シナプス結合荷重の最適な値を求める

第 p 番⽬の⼊⼒信号ベクトル： xp = ( xp1 , xp2 , … , xpn )

第 p 番⽬の教師信号： tp

シナプス結合荷重

閾値
q

⼊⼒

…

出⼒信号 o

ニューロンx1

xn

x2
x3

w1

wn
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階層型ニューラルネットワーク
n ⼊⼒層 ＋ 複数の中間層 + 出⼒層
n ニューロンは，⼀つ前の層の全てのニューロンと結合
n 情報は，⼊⼒層 → 中間層 → 出⼒層，の順で流れる

⼊⼒
信号 ・

・
・

・
・

・

・
・

・

⼊⼒層 中間層 出⼒層

出⼒
信号・

・
・ ・

・
・

シナプス結合

出⼒

… 出⼒
o

ニューロン!"

!!
!!

!"
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階層型ニューラルネットワーク
n ⼊⼒層 ＋ 複数の中間層 + 出⼒層
n 層を増やす（多層化，深層化），構造を複雑にする（構造の複雑化）と，

より難しい問題を解く可能性が⾼まる
n ⼊⼒信号が与えられると，教師信号を出⼒するシナプス結合荷重を学習

⼊⼒
信号 ・

・
・

・
・

・

・
・

・

⼊⼒層 中間層 出⼒層

出⼒
信号・

・
・ ・

・
・

⼊⼒
信号 ・

・
・

・
・

・

⼊⼒層 中間層 出⼒層

出⼒
信号・

・
・ ・

・
・

・
・

・

・
・

・

w

w

w

w

w
w

w

w

w
w

w

w
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ネットワークの学習
n 例題１：２点 (0, 1)，(1, 2) を通る直線を求めよ

20

直線の式を として，

(0, 1)
(1, 2)

⇒

x = 0 を⼊⼒すると，y = 1 と出⼒
x = 1 を⼊⼒すると，y = 2 と出⼒

ような，パラメータ a, b を求めたい問題と⾔える

p これは，

p 求めたいパラメータ数と同じ数の⽅程式が必要
⇒ 必要な点数＝求めたいパラメータ数
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ネットワークの学習
n 例題２：図に⽰す N 個の点からなる点群に

最も適する直線を求めよ

21

全ての点を通る直線はない

直線 がある点（m, n）を通る
（ が n と等しい）

N 個の点のうち，任意の点（m, n）について，
  の値が n と等しい，あるいは，ほぼ等しくなる

ような直線（パラメータa, b）を求める

 とすると，N 個の点のうち，任意の点（m, n）について，
  の値が n と等しい，あるいは，ほぼ等しくなる ⇒

ような直線（パラメータa, b）を求める
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ネットワークの学習
n 例題２：図に⽰す N 個の点からなる点群に

最も適する直線を求めよ

22

 とすると，任意の点（m, n）について，
となる直線（パラメータa, b）を求める

１）適切な⽅法で，パラメータa, bの値を決める
＊通常はランダムに値を決める

２）点群内の各点ごとに，  を計算し
その２乗の総和       を求める

３）E ≒ 0 であれば処理を終了．そうでなければStep.4へ進む．

４）E = 0 となるようなパラメータa, bの値を求める．そしてStep.2へ戻る

最⼩⼆乗法による
パラメータ値推定 実は，これがDNN（AI）の学習法
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最⼩⼆乗法によるネットワークの学習
n ⼊⼒信号が与えられると，教師信号を出⼒するシナプス結合荷重を学習

23

１）適切な⽅法で，シナプス結合荷重の初期値を決める
＊通常はランダムに値を決める

２）各学習データごとに，e = |システムの出⼒ー教師信号| を計算し
その２乗の総和       を求める

３）E ≒ 0 であれば学習を終了．そうでなければStep.4へ進む．

４）E = 0 となるようなシナプス結合荷重の値を求める．そしてStep.2へ戻る

⼊⼒
信号 ・

・
・

・
・
・

・
・
・

⼊⼒層 中間層 出⼒層

出⼒
信号・

・
・ ・
・
・

w

w

w

w

w
w

w

w

w
w

w

w
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AIと医療の関わり
24

フェーズ１
所有するデータを，公開されているAIシステムに適⽤

フェーズ２
データ・知⾒を提供し，開発者が新しい
AIシステムを開発

フェーズ３
データ収集からAIシステム開発まで全て実施

所有するデータを，公開されているAIシステムに適⽤

データ・知⾒を提供し，開発者が新しい
AIシステムを開発

データ収集からAIシステム開発まで全て実施

-20-
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公開されているAIシステム
n Classification & Detection

p CNN（Convolutional Neural Network）系：
VGG，YOLO，Xception，EfficientNet，EfficientDetなど

p Transformer系：
ViT（Vision Transformer），SwinTansfomer，など

n Segmentation
p U-Net系（U-Net++， U2Netなど）
p Faster-R CNN
p SAM（Segment Anything Model）

n 基盤モデル・マルチモーダル
BioMedClip，BioMedGPT：医⽤画像 ＆ テキスト
PathClip, PathGen：病理画像

25
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Classification & Detection
n CNN（Convolutional Neural Network）系

p 複雑CNN系：多層，複雑な構造
VGG，ResNet，Inception，YOLO

p 簡素CNN系：（複雑CNN系と⽐べ）簡素な構造
Xception，MobileNet，EfficientNet，EfficentDet

n Transformer系
ViT（Vision Transformer），SwinTansfomer，など

26

画像分類

腫瘍画像：89%

バウンディング
ボックス

物体検出

腫瘍：89%

⼊⼒画像
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Classification & Detection
n CNN（Convolutional Neural Network）系

p 複雑CNN系： VGG，ResNet，Inception，YOLO
p 簡素CNN系： Xception，MobileNet，EfficientNet，EfficientDet

n Transformer系：ViT（Vision Transformer），SwinTansfomer，など

27

性能
複雑CNN系 ≒簡素CNN系Transformer系

＊いずれも性能は⾼く，あくまで相対的な⽐較
⾼ 低

必要なPCスペック（価格）
複雑CNN系Transformer系

⾼ 低
簡素CNN系

＊パラメータ数が多いほど，⾼いスペックが必要

Classification: VGG, ResNet, EfficientNet,
Detection      : YOLO, EfficientDet で始められては

VGG，ResNet，Inception，YOLO
Xception，MobileNet，EfficientNet，EfficientDet
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Segmentation
n セマンティック・セグメンテーション

p 画像の全画素を
どの物体クラス（カテゴリー）に属するか

で分類
p U-Net系（U-Net++， U2Netなど）
p 同クラス間で重なりがある場合，同クラスの領域として認識

⇒ 物体ごとの認識が不可

28

⼊⼒画像
セマンティック

セグメンテーション
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Segmentation
n インスタンス・セグメンテーション

p 画像の注⽬領域（ROI：Region of Interest）内の画素を
l どの物体クラス（カテゴリー）に属するか
l どのインスタンスに属するか

で分類
p Faster R-CNN，DeepMASK
p 物体ごとに領域分割・認識が可能

29

⼊⼒画像
セマンティック

セグメンテーション

インスタント
セグメンテーション
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Segmentation
n SAM（Segment Anything Model）[1]

p Meta社が開発した，セグメンテーションのための基盤モデル
p プロンプトやマウス操作によって，画像内の任意の領域を
⾃動的に識別・分割

p 画像をアップロードして利⽤可能
https://segment-anything.com/demo

p 学習済みモデルやコードが公開
https://github.com/facebookresearch/segment-anything

30

⼊⼒画像

[1] A. Kirillov, et al. arXiv:2304.02643, 2023

SAM
セマンティック

セグメンテーション

-21-
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AIシステムを使⽤する上で
n AIには個性（性質，特徴，⻑所・短所）がある

n DeepSeek
p ⼤規模⾔語モデル
p 約55⽇間の学習期間と558万⽶ドルの費⽤でトレーニング
＊ GPT-4：7800万ドル
p GPT-4oやClaude 3.5 Sonnetとほぼ同等の性能を，GPT-4の1/10の

コストで提供

n ERNIE
p 複数のモダリティ（テキスト，画像，⾳声，映像）を扱える
p DeepSeek-R1とほぼ同等の性能を半分のコストで提供
p GPT-4oやDeepSeek-V3、GPT-4.5と⽐較

31

（2024年12⽉）

（2025年3⽉）
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AIシステムを使⽤する上で
n AIには個性（性質，特徴，⻑所・短所）がある

32

尖閣諸島は
どこの国の領⼟？

中国固有の領⼟！

ハルシネーション
事実に基づかない不正確な情報や誤解を招く

情報を，さも事実のようにもっともらしく出⼒

データの不完全さ・バイアスが原因
Deepseekの場合，中国で利⽤可能なデータで

学習している可能性
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AIシステムを使⽤する上で
n AIには個性（性質，特徴，⻑所・短所）は

p 学習データの種類・質・特徴
p ネットワーク構造
に依存

p 所有データで所望する処理が実現できるか確認
p どのデータで良い（悪い）結果を出るかを解析・把握
p 学習データを確認し，所有データとの類似点・相違点
＊画像の場合：画質，解像度，撮像条件など，

33

所有するデータを使って，AIシステムの特徴を把握
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AIと医療の関わり
34

フェーズ１
所有するデータを，公開されているAIシステムに適⽤

フェーズ２
データ・知⾒を提供し，開発者が新しい
AIシステムを開発

フェーズ３
データ収集からAIシステム開発まで全て実施

Ku
m

am
ot

o 
Un

iv
. I

nt
el

lig
en

t M
ed

ic
al

 Im
ag

e 
M

ed
ia

 L
ab

or
at

or
y

n 少なくともパラメータと同じ数のデータが必要

n データが多いほど，最適な値を推定する可能性が⾼まる
＊逆に，データ数が少ないと...

n うまくデータを選べば，少数でも最適なパラメータ値が推定可能？
⇒可能性はあるが，そもそも問題に対するデータの選択法は未確⽴
⇒そのため，やはりデータが多くあるのが望ましい

最⼩⼆乗法によるパラメータ値推定
35

データによって推定結果が変わる
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階層型ニューラルネットワーク
n ⼊⼒層 ＋ 複数の中間層 + 出⼒層
n 層を増やす（多層化，深層化），構造を複雑にする（構造の複雑化）と，

より難しい問題を解く可能性が⾼まる
n ⼊⼒信号が与えられると，教師信号を出⼒するシナプス結合荷重を学習

⼊⼒
信号 ・

・
・

・
・

・

・
・

・

⼊⼒層 中間層 出⼒層

出⼒
信号・

・
・ ・

・
・

w

w

w

w

w
w

w

w

w
w

w

w

ネットワークの多層化・複雑化により，
学習すべきパラメータ（シナプス結合荷重）が増加

求めたいパラメータ数と同数以上のデータが必要

-22-
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AIシステムにおける学習データ
n AIシステム構築には学習データが必要

37

AIシステム構築に
必要なデータ数は？

・問題の複雑さ
・AIシステムの
複雑さ

できるだけ多く

n DNNでは，特に複雑なタスクでは⼤量の
データが必要
ü 画像認識 ：数万〜数百万の画像
ü ⾃然⾔語処理：数百万〜数⼗億の単語

n シンプルな回帰問題や分類問題では，
数百〜数千のデータで⼗分な場合もある解決策２：データ数を増加

解決策１：少数データでもAIシステムを構築
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少数データによるAIシステム構築法 その１

n ⼤量のデータで学習したAIシステムを直接利⽤
Ex. VGG：⼤規模⼀般画像データセットImageNetを使って学習

38

= 21,841クラス，計14,197,122枚の画像

bi
rd

ca
r

bo
ttl

e

医⽤画像に⽐べ
⼀般画像の多様性は⾼い

⼀般画像を認識できるシステムは
医⽤画像もある程度認識可能ではVGG

猫

[1] O. Ronneberger, et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI 2015.
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少数データによるAIシステム構築法 その２

n ⼤量のデータで学習したAIシステムをうまく利⽤
１）所有するデータ数が多くない場合
Ex. VGG

39

画像特徴抽出部
認識部

⼀般画像認識に有効な特徴を
抽出できている

特徴抽出部のパラメータは
そのまま使⽤

認識部のパラメータを
所有データで学習

所有データに特化した
識別部を構築

転移学習
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少数データによるAIシステム構築法 その３

n ⼤量のデータで学習したAIシステムをうまく利⽤
２）⼗分な数のデータを所有する場合
Ex. VGG

40

画像特徴抽出部
認識部

ファイン
チューニング

システムの全パラメータを
所有データで学習

学習済AIシステムの
パラメータを初期値として

使⽤

最⼩⼆乗法では，パラメータの初期値を
ランダムに初期値を選ぶ
⇒ 最適値が求められない可能性
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AIシステムにおける学習データ
n AIシステム構築には学習データが必要

41

AIシステム構築に
必要なデータ数は？

できるだけ多く

・問題の複雑さ
・AIシステムの
複雑さ

解決策２：データ数を増加

解決策１：少数データでもAIシステムを構築
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学習データの増加法 その１

n Data augmentation
元画像に画像処理を施し，別の画像を⼈⼯的に⽣成

＝回転・並⾏移動・反転・ノイズ追加・画質変更，など

42

医⽤画像への適⽤には制約有り

左右反転画質変更
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学習データの増加法 その２

n 画像⽣成AIシステムを使⽤
Generative Adversarial Network (GAN)による
細胞の多重焦点画像列⽣成[1]

p SiHa細胞

p 癌細胞

43

[1] K. Morooka PSIVT’19

n 画像⽣成AIシステムを使⽤
Stable Diffusion[1]

今後のシステムの発展次第では使える可能性
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学習データの増加法 その３

n 公開データセットの利⽤
＊公開データと所有データの類似点・相違点を把握

画像の場合：画質，解像度，撮像条件など

【使⽤法１】

44

所有データ 公開データ

n データの性質が類似
n データ数がほぼ同数

学習データ

n 公開データセットの利⽤
＊公開データと所有データの類似点・相違点を把握

所有データと性質が多少異なっても，公開データセットは利⽤可能
【使⽤法２】

九州⼤学病院で収集した
23名の肝転移再発患者の
造影CT画像

所有データ

転移性腫瘍（肝転移），
原発性腫瘍を含む
131症例の造影CT画像列

公開データ：LiTS[1] (Liver Tumor Segmentation)

Step1: 公開データで事前学習

腫瘍を含むCT画像の
特徴を把握

Step2: 所有データで本学習
公開データセットの情報を把握
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学習データの増加法 その４

n 国内外の医療機関と共同でデータベース構築
J-MID

45

[1] https://www.uro.med.kyushu-u.ac.jp/message/     [2] https://www.okayama-u.ac.jp/tp/profile/message_j.html

江藤正俊先⽣[1] 那須保友先⽣[2]

（岡⼤学⻑）

膀胱鏡画像からの
膀胱がん検出

共同研究契約
結びましょう!!いいですね

尿管

膀胱
九州⼤：膀胱
岡⼭⼤：尿管

の症例が多い

九⼤で開発した技術
使えないかな？

データベースやソフトウェアの共有
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AIと医療の関わり
46

フェーズ１
所有するデータを，公開されているAIシステムに適⽤

フェーズ２
データ・知⾒を提供し，開発者が新しい
AIシステムを開発

フェーズ３
データ収集からAIシステム開発まで全て実施
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AIシステム開発
n Sony Neural Network Console[1]

p GUIを使ってプログラム作成（LEGO・マインドストームに類似）
ü ブロックを選択・積み⽴ててニューラルネットワークを構築
ü ブロック内のパラメータ（ニューロン数など）を設定

p VGG，ResNet，U-Net，Vision Transformerなども使⽤可能

47

[1] https://dl.sony.com/ja/
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AIシステム開発
n Pythonでプログラミング

p プログラム作成は（昔に⽐べ）かなり楽
ü ライブラリ：Pytorch，Tensorflow，Keras
ü ChatGPTで作成可能

p 書籍，ウェブ，Youtubeなどで，いつでもどこでも気軽に（？）
プログラミングや機械学習を学べる

p 情報系の知り合いを作ることをお勧めします
ü プログラミングの相談
ü 最新のAI技術のキャッチアップ

p プログラミングは楽しいですよ（個⼈的感想）

48

⾃らAIシステムを構築し
博⼠号取得

九州⼤学医学研究院
衛藤希先⽣
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Take home message
49

AI

AIをよく知って
仲良く付き合いましょう

医療従事者・患者の
皆さんが幸せに
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謝辞
n 研究室メンバー

n 共同研究者

50

熊本大 岡山大

第81回⽇本放射線技術学会総会学術⼤会 教育講演

諸岡健⼀
morooka@cs.kumamoto-u.ac.jp

AI⼊⾨
〜AIを医療・研究で使う上で

知っておくべきこと〜

終了

-25-



 
 

第 89回放射線治療部会（横浜市） シンポジウム 

「放射線治療におけるAIの活用 ～現在と未来～」 

 

座長集約 
  

山形大学医学部附属病院  鈴木 幸司 
  

名古屋大学 加茂前 健 

 

 近年，放射線治療分野においても artificial intelligence (AI) 技術を用いた製品や研究が多くなってお

り，今後ますます臨床導入が進むことは間違いないと考えられます．社会問題として，AI の普及によ

り仕事がなくなるという懸念がありますが，放射線治療分野においては，どうでしょうか？ もちろ

ん，業務の一部はAIによって自動化される可能性が高いでしょう．一方で，AIでは補えない業務も必

ず残るはずです．それほど遠くない未来で，そのような時代が来ることが予想されます．むしろ，すで

にその時代に足を踏み入れているのかもしれません． 

 放射線治療分野においてAI技術が導入されても，「安全・安心な放射線治療を患者さんに提供する」

という責務は不変です．そうすると，自ずと我々もAIを使いこなす立場にならなくてはならず，AIの

基本的な知識を身につけ，AI のアドバンテージとピットフォールを理解した上で運用することが重要

となります．本シンポジウムでは，AI技術を搭載した臨床機器や，AIを活用した研究に精通された 5

名の演者をお招きし，AI 臨床導入の"現在"の状況と，ご自身あるいは他の研究者が実施している研究

（"未来"）について，ご講演をいただきました． 

 本シンポジウムに先立ち行われた教育講演において，熊本大学 諸岡先生よりAIを医療・研究で使

う上で知っておくべき知識について，解説をいただきました．シンポジウムの内容を理解する上で必要

な基礎知識を得ることができ，大変有意義なご講演でありました． 

 シンポジウムでは，まず佐賀大学医学部附属病院 永見先生より，画像認識を中心としたAIのご講演を

いただきました．画像認識の基礎から，レディオミクス，セグメンテーションについてご紹介をいただきま

した．画像認識 AI が出力する回答は説明の無い第二の意見であり，再現性や信頼性の課題もあるため，現

時点では必ず知識と経験に基づく医学的判断の確認が必要であるということでした．大阪国際がんセンター 

上田先生からは，AI技術を利用したVMATプランニングのご講演をいただきました．AIを用いた治療計画

の具体的な手順とピットフォールについて詳細に解説いただき，計画時間の短縮と標準化に貢献できる技術

であるということでした．熊本大学 大野先生からは，研究や品質管理における AI 利用について，ご講演

をいただきました．生成AIやクラウドベースの開発環境の利用方法を具体的に解説いただき，AIを身近に

感じられた参加者も多かったのではないでしょうか．広島大学病院 河原先生からは，患者線量検証につい

てご講演をいただきました．患者線量検証に対する AI 予測の利点が解説され，今後の臨床導入に向けた課

題と，ご自身で取り組まれている研究開発についても紹介をいただきました．オンライン適応放射線治療の

普及のためにも，必要な技術であると感じました．最後に山口大学医学部附属病院 椎木先生から，IGRTを

中心にご講演をいただきました．IGRT の多岐にわたる役割における AI の活用事例を具体的に紹介いただ

き，加えてAIの医用画像研究の最新動向についても詳細に解説をいただきました． 

 本シンポジウムでは，放射線治療分野における臨床でのAI活用の現状を把握し，今後我々はどのよ

うに準備し，活用していくべきか，さらに AIの限界やピットフォール，今後の発展の方向性について

考える良い機会となりました．また，AI を活用した研究の最新トレンドや，研究実施時に直面する課

題について，実際に研究を進めておられる講師の先生方から直接お話しを伺うことができ，大変貴重で

有益なセッションでした．最後に，ご多忙の中ご講演いただいた演者の先生方に，心より厚く御礼申し

上げます． 
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第 89回放射線治療部会（横浜市） シンポジウム 

「放射線治療における人工知能の活用 ～現在と未来～」 

 

画像認識とセグメンテーションについて～最前線と未来展望～ 

 
佐賀大学医学部附属病院 永見 範幸 

  
 

 

１．緒言 

近年の放射線治療は，強度変調放射線治療（IMRT）などの高精度化により線量の増大と同時に，正常

組織への線量低減も可能となり，多くのがんで手術と同様の治療成績を得られるようになってきた．そ

のため，件数は増加傾向にあり，業務量も合わせて右肩上がりである．2022 年に遠山らがおこなった

日本における放射線治療施設の業務量に関する大規模調査において，各フェーズの所要時間が明らか

になった（Fig.1）． 

 

Fig.1 

 

放射線治療業務の各フェーズで時間を要しており，特に放射線治療計画には約 5 時間であり，放射線

治療業務の大部分を占めている．医療の現場では，働き方に「効率化」が求められており，その問題を

解決するための方法の一つが人工知能（Artificial Intelligence）の利用である． 

  本シンポジウムでは，放射線治療における人工知能の活用ということで，人工知能を用いた画像認

識について紹介した． 
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２．画像認識とは 

画像認識（Image Recognition）とは，画像に含まれる情報をコンピュータが解析し，物体やパター

ンを自動的に認識・識別する技術である．近年，機械学習，とりわけディープラーニング（深層学習）

の進展により，その精度や応用範囲が飛躍的に拡大している．画像認識は，その応用領域により「一般

画像認識」と「医用画像認識」の二つに大別できる（Fig.2）．いずれの画像認識技術において，主に大

量の画像データを学習した人工知能モデルを活用し，高精度な認識・分類を行っている．一般画像認識

において，道路標識や歩行者の検出，衝突予測など，安全かつ効率的な運転を実現する自動運転技術や

スマートフォンや監視カメラにおける顔認証技術が私たちの生活をすでに支えている． 

 

 

 

Fig.2 Fig.3 

【医用画像認識】 

・自動輪郭抽出 

自動輪郭抽出は，治療計画において腫瘍や正常組織を正確に区別し，高精度な放射線照射を行うた

めの重要な技術である．具体的には，人工知能技術（主にU-NetなどのCNNベースのモデル）を用い

て医用画像から腫瘍や臓器の輪郭を自動的に検出する．この技術により手作業による負担が軽減され，

作業効率の向上，抽出精度のばらつきの低減，これらに伴う高精度放射線治療計画の立案に貢献でき

る． 

 

・レディオミクス 

 CT画像やMR画像から肉眼では評価が難しい定量的な特徴量（形状・濃度・テクスチャなど）をコ

ンピュータにて抽出し，患者ごとの診断や予後予測を支援する技術である．抽出された特徴量は機械学

習モデルにより解析され，予後予測，再発リスク評価，治療効果予測などに活用される．これにより個

別化医療の実現や，臨床現場での治療法決定支援が可能になる． 

 

【放射線治療分野の画像認識における人工知能の重要性】 

放射線治療分野における画像認識では，人工知能技術の活用が必須となっている．学習モデルは，学

習データ（CTやMR画像など）を入力として受け取り，その出力データと教師データ（医師が定めた

正解）との差（誤差）が最小となるよう学習を繰り返して，精度を高める（Fig.3）． 

入力データ例：CT画像，MRI画像，PET画像など． 

出力データ例：腫瘍や臓器の輪郭，再発リスク，生存期間予測，治療効果評価など． 

 

人工知能による画像認識技術の高度化され，放射線治療の精度・安全性が向上し，医療の質が飛躍的に

改善されつつある． 
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３．自動輪郭抽出 

  近年，人工知能の発展は著しく，多くのメーカーより人工知能を搭載した輪郭抽出のソフトが発売

および発売の計画がされている．しかし，そのほとんどのソフトが正常臓器を対象としており，腫瘍の

輪郭抽出は実装されておらず，課題が残っている． 

  従来の手作業による輪郭抽出では，医師や放射線技師医学物理士の経験や主観に依存するために，

観察者間や観察者内での輪郭抽出のばらつきが生じやすい．この輪郭抽出におけるばらつきは，放射線

治療計画における線量分布の精度低下を引き起こし，治療効果の低下や正常組織への意図しない照射

による有害事象につながる可能性がある．Liu らは，2人の放射線腫瘍医が抽出した標的体積，それを

元にしたD95の比較を報告した．標的体積のダイス係数Dice Similarity Coefficient（DSC）の中央値は

0.85（範囲 0.72-0.96）であり，標的体積に有意な差はなかったが，D95には有意な差があった．これは，

輪郭抽出の類似度は高いが，輪郭の一致し

ない部分による線量への影響があること

を示している（Fig.4）． 

また，呼吸性移動や腫瘍の体積変化に対応

する適応放射線治療（Adaptive Radiation 

Therapy: ART）では，治療中に迅速かつ正

確な輪郭抽出が求められる．そのため，自

動輪郭抽出技術を導入することで，ばらつ

きの削減，線量分布精度の向上，および治

療の迅速化を実現し，安全で効果的な放射

線治療を可能にすることが社会の要望と

して期待されている．ARTに関しては，「放

射線治療計画ガイドライン 2024 年版（金

原出版）」が発刊され，この版よりARTが

新規項目として追加されている．詳細は，

参考にされたい． 

 

【人工知能／自動輪郭抽出の問題点】 

Nagamiらの研究では，肝細胞がん（HCC）におけるDSCは，低分化型で 84.9％、高分化型で 81.1％

と報告されている．Fig.5に、Nagamiらが開発した人工知能（深層学習に基づく二段階転移学習法）を

用いた、ダイナミックコントラスト増強

（DCE）CT画像におけるHCC領域抽出

手法の概要を示す．本手法で，まず肺が

んデータで事前学習されたモデルを用い

て低分化型 HCC のモデルに転移学習を

行い，さらにそのモデルを高分化型HCC

に対して転移学習する構成となってい

る． 

Fig.6の上段には，DCE-CT画像に

おける人工知能によるHCC領域抽出の

結果の一例を示す．腫瘍径が大きい

HCCでは比較的良好な精度で抽出され

 

 

Fig.4 

 

Fig.5 
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ている．Fig.6の下段は，DSCの値が低い症例を示す．この原因は，腫瘍の大きさが小さいことに加

えて，腫瘍の近くを血管新生によりできた栄養血管を含んだ輪郭抽出となっていることである．これ

は，学習データに腫瘍の側を血管が走行する症例が少なく，学習できていない可能性がある． 

 

 

 

Fig.6 

 

 

【エッジケース】 

 人工知能においては，学習時に含まれていない特殊なパターンや稀な症例，いわゆる「エッジケース」

に対して精度が著しく低下することがあることが報告されている．人工知能は学習データの分布に基

づいてパターンを抽出し予測を行うため，未学習の入力に対しては誤認識や過小評価を起こしやすい．

Cuiらは，複雑な形状の肺がんの自動輪

郭抽出の精度が低下すると報告してい

る（Fig.7）．自動輪郭抽出において，手術

後の解剖変化や金属アーチファクトを

含む画像，小型腫瘍などがエッジケース

となり，診断支援や輪郭抽出の精度を著

しく損なう可能性がある．そのため，人

工知能の性能評価には平均的な精度だ

けでなく，エッジケースに対する頑健性

の確認が不可欠である． 

 

 

 

 

 

Fig.7 

-30-



【自動抽出された輪郭のコンセンサス】 

自動抽出された輪郭が医師や施設の方針に則っているかどうかは，人工知能を臨床現場で活用する上

で極めて重要な課題である．人工知能は大量の画像データから学習するが，その学習元が特定の医師や

施設の輪郭定義に基づいている場合，他の施設や観察者の方針と乖離する可能性がある．たとえば，腫

瘍の境界定義や臓器の取り扱いには施設ごとに微妙な違いがあり，人工知能が抽出した輪郭が臨床的

に適切であるとは限らない．したがって，自動抽出結果は鵜呑みにせず，医師による確認と必要に応じ

た修正が必須である．先行研究において，乳がん術後の胸壁領域の自動抽出された輪郭と手動輪郭の優

劣を 2 人の医師が評価した報告がある． 医師 A は人工知能が抽出した輪郭の 60％は，手動輪郭より

も良いと判断したが，一方で医師Bは 37％にとどまった．また，2人の医師の決定の一致率であるKappa

係数は，0.257と低い値であった（Fig.8）．これらから，観察者（医師）による判断が，異なることが明

らかになり，各施設での抽出された輪郭のコンセンサスは必要不可欠である． 

 

Fig.8 

 

４．まとめ 

放射線治療の現場では，人工知能を用いた画像認識技術が，特に輪郭抽出において欠かせない存在

となりつつある．ただし，利便性ばかりに目を向けて安易に運用すると，思わぬ落とし穴に陥る可能性

がある．現在の人工知能は，学習データや既存の情報をもとに関係性を見つけたり予測を行ったりする

ことには長けているが，その根拠や医学的な解釈を自ら説明することはできない．つまり，人工知能の

出力はあくまで“説明のない第二の意見”であり，最終的な判断には医師の知識と経験に基づく医学的

判断が不可欠である．今後，人工知能技術はさらに医療現場に導入されていくことが確実であるが，重

要なのは人工知能に使われるのではなく，人工知能を使いこなす姿勢である．我々は人工知能の限界を

理解しつつ，それを有効な道具として活用する責任が求められている． 
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1. はじめに IMRT，VMATにおける治療計画 標準化の試み 

インバースプランニングで立案する Intensity Modulated Radiation Therapy (IMRT)や(VMAT)では，治療

計画者間による治療計画の質に大きな差が発生することが知られている．Nelmsらは，複数の施設の複

数の治療計画者に同じ CT 画像と Structure set を用いて IMRT あるいは VMAT のプランを作成させた

(1)．そのプランを Plan quality metrics (PQM) scoreを用いて，プランの質を定量的に評価し，治療計画の

質に影響を及ぼす因子を解析した．治療計画者の経験年数など，いくつかの項目と PQM score との関

係を調査したが，有意な相関は認められなかった．しかし，PQM scoreには大きな差が生じたと報告さ

れている． 

この治療計画の質の差はときに臨床結果に影響を及ぼすことが報告された．Zhong らは RTOG 0522

試験に参加した頭頸部がん患者 767人を対象に評価した(2)．ターゲット・Organs at risk (OAR)の輪郭の

質，ターゲットの線量カバーと臨床結果の関係を調査して，プランの質（輪郭と線量分布）は局所制御

に有意な影響を与えるが，全生存率や遠隔制御との相関は認められないことを発見した．放射線治療計

画の品質管理は，単なる書類作業ではなく，実際に患者の治療成績に直結する重要な要素であることに

注意しなければならない． 

治療計画の質の格差の是正方法として，Villaggiらはクラウド上に症例の dose volume histogram (DVH)

を共有することを提案している(3)．各施設の治療計画者はクラウド上のDVHを目標にプランニングす

ることで，計画者間のプランの質のバラツキを小さくできる．Huntらはターゲット・OARの幾何学的

配置と今まで線量分布から臓器線量を予測して，治療計画前にあらかじめ戦略を建てることで，計画者

間の質を是正する試みを実施した(4)．この方法により，臓器とターゲットのオーバーラップの割合か

ら線量を推測できることを明らかにした． 

IMRT や VMAT プランの質は施設・計画者の経験値・能力に依存し，質の標準化のための方法が注

目されている．その中のひとつに臓器の幾何学的配置を活用する方法がある．本手法はOARの数によ

っては推測するための線量を計算するのが非常に困難になるが，2017年頃，artificial intelligence (AI)技

術のひとつで機械学習を応用したシステム(RapidPlan)が，治療計画装置(Eclipse)に搭載され，臨床で使

用されるようになった．(5)．本稿ではこのRapidPlanの原理や，AI技術を用いたVMATプランニング

の注意点について解説する． 

 

2. AIプランニングシステム RapidPlan 

AI システムによる治療計画システムでは，臓器等の構造のみがわかる新規症例に対して，適切な分

布を決定して，それを実現するための最適化計算を実施するシステムである．この適切な分布は学習し

た分布を基に，計算され導かれる．そのため，AI プランニングシステムによる計算結果はモデルによ

って変化するが，同一症例について同じモデルを使用するのであれば，治療計画の質を一定化できると
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期待される． 

RapidPlanにおけるプランの学習方法は以下の通りである． 

① OARの構造を細分化 

A) Overlap:  ターゲットとの重複部分 

B) In Field:  照射野内に含まれる部分 

C) Leaf transmission: multi leaf collimator (MLC)からの漏れ線量の影響部分 

D) Out of Field:  照射外の部分 

② 登録DVHの細分化では，上記の細分化されたOARはDVHの各領域に優先的に寄与さ

れることがわかっている．この学習ではOverlapと In FieldのOARが対象となる． 

③ GE-DVHの構築のため，ターゲットに投与される線量から，臓器の配置のみでどれくら

いの線量が寄与されるかがあらかじめ計算される．この計算で求められる DVH を幾何

学的DVH  (GE-DVH)と呼ぶ．そのため，ひとつのプランを学習すると，タイプの異な

るDVH，(通常DVHとGE-DVH)がひとつずつ登録される． 

④ 学習症例は 20症例以上必要であり，学習したDVH，及び，GE-DVHの平均カーブが計

算される (Figure 1)．学習した各DVH，及び，GE-DVH のカーブは，この平均カーブに

係数 dによって決定されるカーブを積算することで決定される． 

⑤ dDVHと dGE-DVHのペアが学習症例毎計算され，d の関係式(一次回帰直線)が算出される．

この関係式の傾きは学習するプランに依存する (Figure 2)． 

⑥ 臓器の構造のみがわかる新規症例がモデルに入力されるとき，GE-DVH が計算され，d

が算出される．この d を⑤の関係式にあてはめると，予測 DVH が算出される (Figure 

2)． 

⑦ d の関係は一直線にはならず，ある程度幅があるため，予測 DVH は上限と下限が示さ

れる．下限の予測DVHを達成するために必要なObjectiveがラインで設定される． 

 

 

 

Figure 1. 学習症例のDVH，GE-DVH 平均DVH，GE-DVHと係数 dを用いた各DVH，GE-DVH算

出方法 
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Figure 2. dDVHと dGE-DVHの回帰モデルと dGE-DVHから dDVH を予測する方法 

 

 

そこで，RapidPlanのモデルの質を評価するため，日本の 5施設で研究班を結成して，各施設のモデル

を比較し，モデリングの特徴やコツを調査した．Figure 3に示すように，施設ごとのモデルにより直腸

線量に最大 44%の差が見られた．プランデザインの異なる施設のモデルでは計算結果が異なることが

わかった(6, 7)．RapidPlanは施設内では標準化に寄与する一方，施設間での利用には注意が必要である

ことが示された． 

 

 

Figure 3. 5施設のモデルによる線量差 

 

RapidPlanシステムで構築されたモデルは ZIPファイルで出力して，別施設の治療計画装置(Eclipse)に

登録することで，別施設でモデルを使用できる．これをモデルの共有と呼ばれる機能である．共有のイ

メージ図を Figure 4に示す． 
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Figure 4. モデル共有のイメージ図 

 

プランデザインが同一の関連施設では，このモデルの共有機能を活用することで，標準化に寄与でき

ることが報告されている．オーストラリアのグループでは，10 施設から 10 以上の前立腺癌の VMAT

プランを回収して，モデルを構築・共有することで標準化に寄与できるかを調査した(8)．膀胱の V40

と直腸のV50で臨床プランと比較して有意に低減し，RapidPlanによって，良質のプランを各施設にお

いて作成できたことを報告した．これはあくまでも関連施設によるモデルの共有であり，プランデザイ

ンが異なる施設では，このような検討は実施されていない．前述した研究班では，プランデザインの壁

を乗り越えるため，プランデザインの異なる施設のプランをすべて登録した，Broad modelを構築し，

その効果を調査した．学習症例は 561プランである．Figure 5には，登録されたプランのDVHと係数

dの回帰モデルが示されている．これらの結果から，標的への線量が同等で，臓器線量が低く，複数施

設間のばらつきが小さく，複数の施設で標準化として使用できることが報告された(9, 10)このように，

商用化されているAIプランニングシステム，RapidPlan，では，線量分布とストラクチャの関係性を学

習させることで，新規症例において，学習プランに応じた分布を推測できる．構築したモデルは，ZIP

ファイルにて入出力が可能であり，適切なモデルを作成することで，標準化に寄与できる． 
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Figure 5. Broad modelにおける学習プランのDVHと係数 dの回帰モデル 

 

 

3. RapidPlanの恩恵と注意点 

Sagawaらは新型脳定位放射線治療システムであるHyperArcで構築された線量分布を学習することで，

HyperArc を導入しない施設においても，HyperArc の恩恵を得ることができるのではないかと考えて，

通常のNon-coplanar VMATにおいて，通常の最適化計算で実施された線量分布とRapidPlanで最適化計

算された線量分布を比較した(11)．RapidPlan により，脳線量において大きな改善が観察された (Figure 

6)．その一方では，HyperArcの方が脳線量を低減できていた．これは，ビームアレンジメントが異なる

ためであり，RapidPlanの恩恵を最大限活かすためには，HyperArcのビームアレンジメントが必要であ

ることがわかった． 

 

Figure 6. Non-coplanar VMATにおけるRapidPlanによる脳線量分布の改善 

 

大阪国際がんセンターでは，胸部領域のVMATプランは治療計画装置RayStationを用いて実施してい

る．これは経験上，RayStationの方が肺線量を低減しやすいことがわかっているためである．Eclipseと

RayStationで異なる線量結果を導かれるのは，両者が異なる最適化計算エンジンを保有しており，各コ

ントロールポイントにおけるMLC形状，出力，ガントリスピードの変調のかけ方が異なるためである

と考えられる．食道癌において，一週のアークビームを用いて最適化計算を実施すると，MUの出力が

ほぼ一定のEclipseに対して，RayStationでは 3倍に変化する．(12)．そこで，RapidPlanで，RayStation

プランを学習して，RayStation プランを Eclipse で再現できれば，Eclipse によるプランニングの幅が広

がると考え，RayStationでプランニングにした III期の非小細胞肺癌のVMATプランを学習した．この

モデルを使用すると肺の低線量部分の再現性が悪いことがわかった．これはすべてコントロールポイ

ントで一定に照射しようとする Eclipseの特徴により，妨げられていると考え，肺内のダミーストラク

チャを PTV よりも先に通過する場合，MLC や Jaw で遮蔽する Entry の制約を設けて最適化計算する
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(Figure 7)ことで，低線量部分の再現性が上昇した(Figure 8)．ビームアレンジメントを工夫することによ

り，最適化手法の異なるプランと同等のプランを作成することができた．RapidPlanは，HyperArcや第

3の治療計画装置の分布も学習でき，場合によっては臨床プランを改善できる．しかしながら，最大限

に発揮するために，適切なビームアレンジメントや，出力変調を調整する必要があるが，現状は分布情

報から自動的にObjective関数を設定するのみであり，手動の介入が必要である． 

 

 

Figure 7. III期非小細胞肺癌におけるRayStationモデルを用いる場合のビームセッティング 

 

 

Figure 8. III期非小細胞肺癌におけるRayStationモデルによる肺線量の低減 

 

4. さいごに RapidPlanの可能性と今後の展望 

IMRT/VMAT のプランの標準化のため，AI 技術を用いたプランニングが注目されている．AI 技術を

用いたプランニングの計算結果は，学習プランに依存する．マニュアルによる計算に比べて同等あるい

はそれ以上の質が期待できるが，適切なビームアレンジメントがなければ，その恩恵を最大限に活かす

ことは難しい． 
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1. 背景 

近年，生成 AI（Artificial Intelligence）は様々なコンテンツを生成可能な AI として，注目を集めて

いる．生成できるコンテンツは文章や画像といった簡単なものに留まらず，プログラムや動画とい

った複雑なコンテンツまで拡大している． 

生成AIの 1つであるChatGPTは 2018年 6月にOpen AI社から公開された生成AIであり，精度の

高さから大きな話題となっている．ChatGPTでは，対話形式にて指示を与えるため，高度なプログ

ラミングの知識を必要とすることなく，口語で簡単にプログラムを実行することができる．また，

近年ではファイルアップロード機能や過去のチャットの横断的な参照機能が追加され，活用の幅が

大きく広がっている． 

一方，放射線治療に目を向けてみると，近年，治療技術の高度化により，ますます複雑さが増加し

ている．そのため，品質管理の煩雑さが増しており，休息や余裕の不足，研究への労力の不足に繋

がる可能性がある． 

そこで，本講演では，放射線治療分野における研究や品質管理，ワークフローの一部にChatGPTを

利用する例を提示し，AI活用の可能性を会場の先生方と共に探った． 

 

2. 紹介事例 

講演では，ChatGPTの活用例として以下の 4例を紹介した． 

 

1. 品質管理における事例 

線量分布の解析，比較 

2. 研究における事例 

論文の作成，英文校正，自己査読 

3. ワークフロー改善における事例 

  QAスケジュールの作成 

4. 教育における事例 

問題の作成 

    

    2-1. 品質管理における事例 

  今回の講演では，線量分布の解析，比較を紹介した．はじめに，放射線治療計画装置（TPS） Monaco, 

Eclipseを用いて，線量分布を作成した．Monacoでは，6 MV，10×10 cm2でビームを水ファントム

に入射し，アイソセンタにおける Coronal 面の 2 次元線量分布を，テキストファイルで出力した．

そして，出力したテキストファイルをChatGPTにアップロードし，Fig. 1のように口語にて，指示
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を与え，線量分布を表示した． 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) ChatGPTでのテキストファイルの取り込み指示，(b) 線量分布の表示． 

 

次に，Fig. 2に示すように，表示した線量分布から，線量プロファイルを抽出し，文献 1を参考に平坦

度，対称性を評価した．  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (a) ChatGPTでの線量プロファイルの抽出，(b) 平坦度，対称性の評価． 

 

次に，Eclipseを用いて，VMAT治療計画を作成し，DICOM-RTファイルを出力した．出力したDICOM-

RTファイルのインポートするために，Fig. 3に示すように，ChatGPTに Pythonコード作成を指示し，

Google Collaboratoryにてコードを実行し，線量分布を表示した．また，インポートした線量分布を解析

するため，ガンマ解析用のコード作成も可能であった． 

(a) 

(b) 

(b) 

(a) 

-40-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (a) ChatGPTでの Pythonコード作成，(b) Google Colabolatoryでの線量分布表示，(c)ガンマ

解析のコード作成． 

 

    2-2. 研究における事例 

  今回の講演では，ChatGPTを用いた論文の作成，英文校正，自己査読を紹介した．はじめに，Fig. 

4 に示すように，以前の学会発表の際の抄録を ChatGPT にアップロードし，英語論文のドラフト

作成を指示した．次に，ChatGPTに，タイトルのブラッシュアップ，英文校正，自己査読を指示し

た．タイトルのブラッシュアップでは，強調した点を加えて，5つのブラッシュアップ後のタイト

ルが提示された．英文校正では，曖昧な表現，冠詞の間違い，構文の修正等が提示された．自己査

読では，文法の誤り，方法の説明不足等が指摘された．このように，ChatGPTを利用した論文の作

成，英文校正，自己査読が可能であったが，投稿先のジャーナルによっては，論文作成における生

成AIの利用について禁止しているものやルールが厳格に定められている場合があるため，必ず事

前の確認が必要である．また，ChatGPTに研究データをアップロードする場合は，意図しない形で

アップロードしたデータが ChatGPT の学習に活用されないように，オプトアウトの設定が必要で

ある． 

 

(a) (b) 

(c) 
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Fig. 4 (a) ChatGPTでの英語論文のドラフト作成，(b) タイトルのブラッシュアップ，(c) 英文校

正，(d) 自己査読． 

 

    2-3. ワークフロー改善における事例 

  QAスケジュールの作成，アプリの作成 

  今回の講演では，QAスケジュールの作成を紹介した．仮想の放射線治療室として，Fig. 5 に示す

条件を設定した．そして，各従事者の労働時間を週 5日，午前 4時間，午後 4時間とし，かつ，毎

日業務のない時間が 2時間設けるように，ChatGPTを用いて，QAスケジュールおよび各従事者の

スケジュールを作成した．なお，機器のQA項目，頻度，時間等は米国医学物理学会（AAPM）の

ガイドラインに従うように設定した．Fig. 6 に ChatGPT を用いて，作成されたスケジュールを示

す．ChatGPTからは，専従者，経験者，新人に分けて提示された．また 1年間のスケジュールとし

て，各月にどのような項目を行うのかといった概要も併せて提示された．次に，作成されたスケジ

ュールの調整として，1. 新人は経験者と必ずペアの配置となること，2. QAでは新人が主担当とな

らないことの 2点を追加で設定した．Fig. 7に調整後のスケジュールを示す．このように，ChatGPT

(a) (b) 

(c) (d) 
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では，スケジュール作成とともに，要望に応じた調整も可能であった． 

 

 

 

 

 

 

 

 

 

Fig. 5 (a)仮想の放射線治療室の機器および人員，(b) 仮想の放射線治療室の患者数，治療時間，治療

計画時間． 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 (a) 仮想の放射線治療室の機器および人員，(b) 仮想の放射線治療室の患者数，治療時間，治

療計画時間． 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (a) 仮想の放射線治療室の機器および人員，(b) 仮想の放射線治療室の患者数，治療時間，治

(a) (b) 

(b) (a) 

(b) (a) 
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療計画時間． 

    2-4. 教育における事例 

今回の講演では，線量計測に関する問題の作成を紹介した．線量計測は，放射線治療初心者にとっ

ては，臨床との結びつきが感じにくく分野であるため，ChatGPTを用いて，実際の臨床現場での線

量計測の場面を想定した問題を作成した．作成した問題を Fig. 8に示す．臨床現場同様，受講者が

能動的に問題点を指摘する形式の問題作成が可能であった． 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 ChatGPTを用いて作成した線量計測に関する問題例． 

 

3. まとめ 

本講演では，品質管理，研究，ワークフロー改善，教育における生成AIの活用例を提示した．プログ

ラミングなどの初学者にとっては困難であった作業も，ChatGPT の登場により，口語でやりたいこと

を伝えるだけで実現可能となり，対応できる範囲が大きく広がった．一方で，アイディアのひらめきと

AI の回答の正誤の判断には，人間の広い知識が不可欠である．本講演が読者の先生方にとって，業務

負担軽減による休息や余裕の増加や，研究への推進の契機となれば幸いである． 

 

参考文献 

1. 林直樹 放射線治療技術学実験 フィルムを用いたX線照射野の測定と平坦度・対称性の測定     
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第 89回放射線治療部会（横浜市） シンポジウム 

「放射線治療におけるAIの活用 ～現在と未来～」 

 

患者線量検証の省力化に向けたAIの活用 

 
広島大学病院 河原 大輔 

  

 
 

 

1. はじめに 

強度変調放射線治療（IMRT）や容積変調弧照射（VMAT）の普及に伴い，患者個別の線量検証（Patient-

Specific Quality Assurance：PSQA）は，安全かつ高精度な治療の維持に不可欠である．一方で，従来の

PSQAは労力・時間的負担が大きく，特に国内では未だに実測中心の運用が主流である．近年，AAPM

（米国医学物理学会）によるタスクグループ（TG）報告では，効率化と標準化に向けたガイドライン

が提示されており，さらに人工知能（AI）を用いた省力化の可能性が示唆されている． 

本発表では，AAPM TG218，219，307などの勧告に基づく線量検証手法の標準化の流れを概説し，AI

を用いた PSQAの省力化の研究動向と将来展望について紹介する． 

 

2. AAPMタスクグループの推奨事項と現状 

2.1 TG-218（Miften et al., 20181)） 

AAPM Task Group 218は，IMRTおよび VMATにおける PSQAの信頼性と一貫性を高めるための

標準的指針を示している．本ガイドラインにおいては，「True Composite（TC）」法を標準的な

測定法として推奨している．これは，治療時と同一の照射条件を再現し，複数ビームを一括で照

射することにより，実臨床に近い検証結果が得られるという特徴を有する． 

評価指標としては，**γ解析（3%/2mm）**を用い，許容限界（Tolerance Limit）は γ合格率 95%

以上，行動限界（Action Limit）は 90%以上と定められている．これらの閾値を下回る場合には，

原因特定と是正措置が求められる． 

さらに，本報告書では以下の点についても明示している： 

 測定機器：角度依存性が低い，あるいは角度補正が適切に行える検出器の選択が推奨さ

れている． 

 解析条件：正規化方法（global normalization 推奨），線量閾値（10%以上），および評

価領域の明示が重要であるとされる． 

 結果の解釈：γ解析による Toleranceと Action limitsについて下記のように示されてい

る。（ただし、合格率は万能ではなく，Fail領域の局在やその臨床的意義も併せて評価

すべきであると述べられている．） 

o Universal TLs: γ pass rate ≥ 95%, with 3%/2mm  

o Universal ALs: γ pass rate ≥ 90%, with 3%/2mmγ 
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2.2 TG-219（Zhu et al., 20212)） 

AAPM Task Group 219は，IMRTおよび VMATにおける独立計算ベースの線量/MU検証に関する

標準的手法を提示している． 

本報告書では，測定を必要としない線量検証法（calculation-based QA）を，治療計画段階の品質

保証手段として積極的に活用することの妥当性が述べられている．特に，1D（点線量），2D，3D

にわたるモニターユニット（MU）および線量の独立検証は，迅速性，リソース効率，安全性の観

点から有用であるとされる．推奨事項としては以下の通りである： 

 アルゴリズムの多様性：治療計画システム（TPS）とは異なる原理・アルゴリズム

（例：Clarkson法，AAA以外の計算モデル）を用いた独立計算を採用すべきである． 

 実装上の配慮：独立計算システム導入時には，事前のベンチマーク試験や既知の検証症

例による性能確認が必須である．また，定期的な性能確認（QA）を継続的に行う体制が

望まれる． 

 EPIDの活用：TG-219でも，EPIDを用いた 2D線量分布の比較が有効な手段であること

を認めており，計算ベースの QAと併用することで安全性を高めることが可能である． 

TG-219は，あくまで補完的ではあるものの，高頻度で効率的な PSQAの一手段として，測定レ

スな QAが臨床において現実的選択肢となりうることを示している．また，本手法の導入は，

線量検証にかかる時間と作業負担の削減につながり，特に業務効率の観点からも意義が大き

い． 

また、近年では検出器での測定検証の負担を減らすため，EPID（Electronic Portal Imaging Device）

を用いたフルエンス検証も有効手段とされている．TG-307について下記紹介する． 

2.3 TG-307（Losarek et al., 2021）3) 

AAPM Task Group 307は，検出器を用いないフルエンスマップ検証（non-measurement based 

fluence verification）に焦点を当て，IMRT/VMAT計画における近年の QA手法の一つとして，そ

の有効性と限界を報告している．本ガイドラインにおいては，従来の絶対線量ベースの QAと

は異なり，粒子数（fluence map）に基づいた照射内容の妥当性検証が主眼となっている． TG-

307では，以下の点が強調されている： 

 対象とする QA：IMRT/VMATにおいて，特にセグメントやMLC（Multi-leaf 

Collimator）動作の複雑性が高い場合，フルエンスマップの検証が，照射精度を保つ一手

段となり得る． 

 評価の特徴：照射前 QA（pretreatment QA）や治療中 QA（in vivo verification）双方に適

用可能であり，装置のセッティング不要・リアルタイム性などの利点がある． 

 制限：本手法は吸収線量を直接測定することができないため，実測による絶対線量検証

の代替とはなり得ないことが明記されている．また，ビームモデルやMLCのモーショ

ンログの精度に依存する場合があり，誤差の種類によっては見逃す可能性もある． 
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TG-307の位置づけとしては，測定を不要とする QAの新たなアプローチの 1つとして，作業負

担軽減と QA頻度の増加を両立可能な手段として評価されている．今後の PSQAの省力化に向

けて重要な手段であるとともに，さらに省力化を目指して AIの活用も今後は期待できる． 

 

3. AIによる PSQAの省力化に向けた現状の研究 

3.1 治療装置・計画装置のエラー検出精度の向上 

近年の研究では，従来の γ解析では検出が困難であったMLC位置ずれ，リーフギャップ（DLG），ト

ランスミッションファクタ（TF）などの構造的・動作的エラーの検出において，AIを活用した新たな

手法が提案されている． 

Nyflotら（2019）は，EPID画像を用いて SVM，決定木，k-NN，ANNなど複数の機械学習手法を適用

し，照射誤差の分類精度を向上させた．Kimuraら（2020, 2023）および Sakaiら（2021）は，EPIDまた

は 3Dアレイから取得した照射データに対してRadiomics特徴量を抽出し，Logistic回帰や SVMによる

高精度なエラー分類を実現している．また，Maら（2020）も同様に線量分布の細かい特徴から誤差を

検出するアプローチを報告している． 

さらに，Bedfordら（2023）およびNakamuraら（2023）は，深層学習（Deep Learning）によるアプロー

チを導入し，従来型 ML では困難だった複雑な誤差パターンに対しても高い感度と特異度を示した．

CNNやVAEなどの構造が用いられ，誤差検出性能の新たな基準となりつつある． 

 

表 1．治療装置や治療計画装置のエラー検出に関する研究 

Author/Year Data set size Detector Algorithm Features 

Nyflot et al. (2019)4) 186 Beams EPID SVM, Tree, KNN, 

ANN 

Combined features 

Kimura et al. (2020) 5) 161 Plans 3D array CNN Radiomics 

Ma et al. (2020) 6) 180 Beams EPID Linear discriminant Radiomics 

Sakai et al. (2021) 7) 152 Plans EPID Logistic, SVM, Tree, 

KNN 

Radiomics 

Bedford et al. (2023) 8) 6 Plans EPID RNN Deep learning 

Kimura et al. (2023) 9) 161 Plans 3D array CNN, VAE Deep learning 

Nakamura et al. (2023) 10) 33 Plans 3D array CNN Deep learning 

 

 

3.2 γパス率の予測 

線量検証の省力化においては，照射前に PSQAの合格可否を予測するAIモデルの構築が注目されてい

る．これにより，測定を省略可能な計画を事前に選別し，QAの全体的な負担軽減を図ることが可能と

なる．Valdesら（2017）は Poisson回帰を用いて，計画パラメータに基づく γパス率の推定モデルを構

築した．これに続き，Tomoriら（2020）やHirashimaら（2020）は，2D/3Dアレイを用いて取得したQA

データに対して CNN や決定木ベースのアルゴリズムを適用し，Radiomics 特徴量と組み合わせること

で予測精度を高めた．Matsuuraら（2023）は，EPIDデータから GANを用いて γマップそのものを生

成し，これを基に高精度なパス率予測を行っている．また，Tozukaら（2023）および Ishizakaら（2024）

は，ANNやElastic Net回帰とRadiomicsの組合せにより，PSQA合否判定の高精度化に寄与している． 
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表 2．IMRT線量検証結果の予測に関する研究 

Author/Year Data set 

size 

Detector Algorithm Features 

Valdes G, et al (2017) 11) 637 Plans 2D array Poisson regression Plan parameter 

Interian et al. (2018) 12) 498 Plans 2D array CNN Radiomics 

Tomori et al. (2020) 13) 147 Plans 2D array CNN Radiomics 

Hirashima et al. (2020) 14) 1255 Plans 3D array Tree based algorithm Radiomics+Plan parameter 

Matsuura et al. (2023) 15) 270 Plans EPID GAN Deep learning 

Tozuka et al. (2023) 16) 96 Plans 3D array ANN Deep learning 

Ishizaka et al. (2024) 17) 106 Plans 3D array Elastic net and extra trees Radiomics 

 

3.3 AIによる PSQAの前向きに活用するために 

AI を用いた線量検証モデルの臨床実装においては，施設・装置間で異なる線量分布や計画仕様に対応

する「汎用化モデル」の構築が課題である．施設間のデータの違いを補正するため，AI技術の一種で

あるGANを活用して異なるデータ構造を相互変換したアプローチが検討された．Yangら（2021）は，

異なる照射装置や QA システムに由来するデータについて GAN を用いて補正し，AUC=0.812 という

高い予測性能を達成した．また，同研究では放射線種別，エネルギー種別を越えたモデルの適応可能性

についても示唆している 18)． 

また，前向き検証としてどの程度省力化できるか検討した研究としてWallら（2022）は，絶対線量測

定結果の予測モデルを実臨床において運用し，測定不要な計画の識別と QA 業務負担の大幅削減が可

能であることを示した 19)．平均絶対誤差は 1.08% ± 0.77%，3%の閾値で感度 81.5%，特異度 72.4%，AUC 

0.81 と報告されており，予測誤差が 1%未満と判定された計画において QA 測定を省略した場合，QA

負担は 69.2%削減され，月間 32.5時間の節約効果が得られた 16)． 

 

 

4. ESTRO/AAPM合同ガイドラインに基づく PSQAモデル導入の留意点 

ESTROとAAPMによる合同ガイドライン（Hurkmans et al., 202420)）は，放射線治療におけるAIモデ

ルの開発，臨床検証，報告に関する包括的な指針を提供している．この中で，PSQAに関するAIモデ

ルの導入について，以下の要点が強調されている． 

技術的妥当性と性能評価 

AIモデルの性能評価には，感度，特異度，AUCなどの指標に加え，適合率（precision）や再現率（recall）

などの詳細な指標を用いて，モデルの限界と適用可能範囲を明確化することが求められる． 

外的妥当性の検証として，導入予定施設と異なるデータソースを用いた検証（external validation）が必

須とされており，モデルの汎化能力を評価する必要がある． 

説明可能性とトレーサビリティ 

AIモデルの予測結果に対する根拠を明示できる設計が推奨されており，説明可能性（explainability）や

トレーサビリティ（traceability）の確保が重要である．予測結果の根拠が不明瞭なモデルは，臨床現場

での信頼性を損なう可能性があるため，注意が必要である． 

臨床導入とリスク層別化 

AI モデルの臨床導入に際しては，ローカルでの再学習や閾値の最適化を実施し，施設独自の装置特性

や治療計画の傾向に対応するカスタマイズが望ましいとされている．品質保証プロセスにおけるAI活

用の位置づけについては，現行の測定ベースQAの代替ではなく，リスク層別化による省力化手段とし
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ての補完的利用とする立場が示されている． 

このように，ESTRO/AAPMガイドラインは，AIモデルの有用性と同時に，その導入・評価・運用プロ

セスにおける体系的な整備の重要性を強調している． 

 

 

5. おわりに 

本稿では，AAPMタスクグループによる標準化の動向を概観するとともに，AIを用いた PSQAの省力

化手法に関する近年の研究を紹介した．TG-218 を中心とした従来の実測 QA に加え，TG-219 や TG-

307で示された計算ベースやフルエンス検証の展開は，PSQAの合理化に向けた重要なステップである． 

また，AIを用いたQA自動判定モデルは，エラー検出や γパス率予測において実測QAに匹敵する精

度を示しており，測定を前提としないリスク層別化型QAの実現可能性を高めている．特に，GANの

導入による施設横断的モデルの構築は，今後の臨床導入における鍵となる技術である． 

一方で，ESTRO/AAPM合同ガイドラインが示す通り，AIモデルの導入には，外的妥当性，説明可能

性，運用上の安全基準といった多面的な検証が不可欠である．現時点ではAIは測定を完全に代替する

ものではなく，「予測可能な計画に対して測定を省略する」という選択的な省力化のための補助手段と

して活用すべきである． 

今後は，多施設共同研究によるデータの標準化とモデルの汎用性向上，ならびに医療現場との連携によ

る運用体制の整備が求められる．PSQAの効率化と安全性の両立を実現するため，臨床的・制度的な基

盤整備を含めた継続的な取り組みが必要である． 
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第 89回放射線治療部会（横浜市） シンポジウム 

「放射線治療におけるAIの活用 ～現在と未来～」 

 

AIと画像で誘導する！ 

未来型画像誘導放射線治療のナビゲーション 

 
山口大学医学部附属病院 椎木 健裕 

 
 

1．はじめに 

人工知能（AI）の技術は，大量のデータからパターンを学習し，診断の精度を向上させるだけでな

く，個々の患者に最適化された治療計画の策定を可能とする．現在の放射線治療は，CT（Computed 

Tomography）や MRI（Magnetic Resonance Imaging）などの医用画像を基盤にした画像誘導放射線治療

（IGRT）が主流となっており，画像分類，物体検出，セグメンテーションといった画像処理技術が得

意である AI との親和性が高い分野である．IGRT から取得される医用画像は，単なる位置照合（セッ

トアップ）にとどまらず，リアルタイムでの腫瘍位置の認識，再治療計画を行う適応放射線治療，治療

効果のモニタリングなど，多くの役割を担っている．AI はこれらのプロセスをさらに効率化し，治療

精度の向上や患者の負担軽減に寄与してくると考えられる．本講演では，IGRTのこれらの役割に対す

るAIの活用事例や最新技術の動向について紹介し，IGRTの未来について考察したい． 

 

2．放射線治療とAI 

近年，人工知能（AI）の進展により，放射線治療の全工程においてAI技術の活用が進められてい

る．治療前の患者相談では，放射線治療の適応判断を支援する意思決定支援ツールとしてAIが活用さ

れている．画像取得の段階では，CT，MR，PET（Positron emission tomography）画像に対してAIによ

るメタルアーチファクト除去や，MRIからの合成CT生成，画像品質の向上が実現されている．ターゲ

ットおよび臓器の自動セグメンテーション，解剖学的ランドマークの自動検出，画像位置合わせなども

AIにより効率化されている． 

治療計画においては，AIによる線量分布の予測や再計画支援が行われ，即時適応放射線治療への

応用も進んでいる．治療実施時には，物体認識や呼吸予測により正確な患者位置合わせが可能となり，

CBCT や MVCT（Megavoltage）画像の画質改善，腫瘍進行の自動検出などによって治療の安全性と精

度が向上している． 

さらに治療後のフォローアップでは，テキスト，DICOM画像，ゲノム・生物学的情報などの多様

なデータからAIが有用な知見を抽出し，予後予測や再発の早期発見に貢献している．このように，AI

は放射線治療の全体プロセスに深く統合されつつあり，今後さらに臨床応用が拡大することが期待さ

れている． 

 

3．現在のIGRTの役割を見直す 

IGRTは，治療ごとの治療位置ズレや解剖学変化を補正するために，高度な画像技術を用いるもの

で，治療の高精度化とリアルタイムな適応を可能にする点が大きな利点である． 

IGRTに用いられる医用画像は，CBCT（Cone-beam CT），平面X線画像，EPID（Electronic Portal Imaging 
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Device），透視画像，MRI画像，超音波画像など多岐にわたる． 

X線撮影や，CT，MRIによる毎回照射前の位置合わせにより照射誤差を最小化し，ターゲットマ

ージンを縮小できるため，正常臓器への線量低減につながる．しかし，現状の IGRTにはいくつかの課

題が指摘されている．従来の IGRTを支える日常的な kV（kilovoltage）画像は，高精度な位置合わせを

可能にするものの，蓄積する追加被ばくや撮影時間，リソースの負担が問題視され，適応的な利用法の

再検討が進んでいる． 

 

4．未来のIGRTの役割を考える 

IGRT は，様々な医用画像を使用しているため，AIとの相性は抜群である．これまでの IGRT の

画像の役割は，患者位置合わせを高精度に行うことで，照射精度を向上させることに重点が置かれてい

た．そのため，画像取得時の被ばく線量の増大や腫瘍近傍に金属マーカーを留置するなど，患者に対し

て，あまり優しくない治療が実施されている．AI を応用することで，これらの治療をより低侵襲に実

施することが可能となる． 

また，治療ごとに画像を取得していることから，患者毎の治療時の時系列データを取得すること

ができている．そのため，AI を用いることで，我々人間が見つけることができない腫瘍や正常臓器の

日々の変化を情報（イメージングバイオマーカー）として取得することが可能となる．これにより，腫

瘍内部の不均質性や正常臓器の機能など，これまで放射線治療室内で取得することが困難であった情

報を取得することができ，新たな患者個別の放射線治療の提供が可能となる． 

しかし，現在のところ，AIを搭載した IGRT装置は誕生していない．これは，放射線治療の照射

（治療）に直結することから，医療装置への搭載はハードルが高いものになっていると考える．そのた

め，ここでは，我々の研究室で取り組んでいる IGRTのAIの応用について解説する． 

 

4.1.高精度放射線治療の高度化 

頭頸部の放射線治療において，位置合わせを実施するための CBCT 撮影では，アーチファクト

により，画像の一部が欠損し，解剖構造の判別が困難になることがある．また，画像が欠損することに

より，再治療計画に使用するのは，困難である．そこで，AI を用いることで，アーチファクトを低減

させ，画質の向上を図っている [1]．図１に，AI ベースのアーチファクト低減させた CBCT を示す．

CBCTを元にアーチファクトを低減させ，画像欠損を修正できているのがわかる． 

また，放射線治療の呼吸性移動対策を行う際に，治療機器は，複雑な人間の呼吸運動に対応しな

ければならない．呼吸運動は速く，治療機器の応答に遅延が生じてしまい，治療精度が低下する可能性

がある．そのため，呼吸による肺腫瘍の未来位置を予測することで，この応答遅延時間を補正し，治療

精度を担保する [2]． 

 

 

Planning CT CBCT CNN(U-net) Transformer-based
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図１．AIを用いた頭頸部放射線治療におけるCBCTの画質改善． 

アーチファクトで画像が欠損している部分を修正している． 

 

4.2.低侵襲な放射線治療の実現 

現在の呼吸性移動対策においては，透視画像を用いて，リアルタイムに腫瘍の動きをモニタリ

ングしながら治療を行う動体追尾放射線治療や動体追跡放射線治療などがある．これらの治療法では，

腫瘍をリアルタイムに高精度に認識する必要があるため，腫瘍近傍に金属マーカーを留置する必要が

ある．そのため，気管支鏡検査を用いた金属マーカーの留置など，侵襲的な手技が必要となっている．

そこで，AI の得意領域である画像内の物体認識を活用することで，透視画像内の腫瘍の形状と位置を

認識し，金属マーカーを使用せずに呼吸性移動対策に応用する試みを行っている [3]．図 2に，AIが認

識した腫瘍形状および位置を示す． 

また，腫瘍のリアルタイムモニタリングには透視画像を使用するため，治療時間が長くなる場

合，患者への被ばく線量が問題となる．我々は，動体追跡放射線治療の治療効率が低下する場合，皮膚

への被ばく線量が増加することをモンテカルロシミュレーションによって明らかにしている（参考文

献）．そこで，AIを用いて低線量の低画質透視画像を取得し，その画像を高線量の高画質透視画像へ変

換することで，被ばく線量を低減させる可能性について示している [4]．図 3に，AIが生成した高線量

の透視画像を示す． 

 

 

図 2．透視画像に対するAIを用いた肺腫瘍認識．白点線は肉眼で確認した肺腫瘍位置・形状を示して

おり，白塗り部分は，AIが認識した肺腫瘍形状を示している． 

 

 

図 3．リアルタイム腫瘍モニタリングに使用した透視画像．AIを用いて低線量画像から高線量画像を

生成している．被ばく線量を低減させ，高画質の透視画像を取得可能であることを示した． 

 

-53-



4.3.正常臓器の機能の可視化 

放射線治療計画CTや IGRTにおけるCBCTは，単一エネルギーでの撮影を行っている．近年，

2つの異なるX線エネルギーを使って撮影を行うDual Energy CT（DECT）が注目されている．これに

より，組織や物質の識別がより正確になる．しかし，DECT 装置は高価であるため，AI を応用するこ

とで，単一のエネルギー画像からもう一つのエネルギーを生成し，DECT画像を作成する取り組みを行

っている [5]．図 4 は，AI が生成した DECT によるヨードマップを示している．肺塞栓症による血流

低下を示していることがわかる．これにより，肺機能を予測することが可能であることを示唆した． 

 

図 4．単一エネルギーのCTからAIが予測したDECT画像のヨードマップ 

右肺の肺塞栓症による血流低下を示している． 

 

4.4.放射線治療の患者個別化 

放射線治療前および治療中の画像を用いて腫瘍の構造変化を解析し，生体工学的手法により腫

瘍の硬度（ストレス）を定量化した．得られたストレスマップの変化が，局所制御（LC），無増悪生存

率（PFS），全生存率（OS）といった予後指標と有意に関連していた．従来の腫瘍縮小率による予測と

比較しても，ストレス指標の方が予後との相関が強く，治療効果予測に有用である可能性が示唆された 

[6]．これは，腫瘍の構造的・力学的変化が放射線治療効果の本質に関与していることを示すものであ

る．生体工学シミュレーションとAIを融合することで，より精度の高い個別化予測モデルの構築が期

待される． 

 

図 5．治療前および治療中のCT画像の腫瘍構造から，腫瘍硬度を算出し，治療予後と関連する新た

なバイオマーカーとして提案した．今後，本手法とAIとの融合が期待される． 
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5．今後の課題とまとめ 

本稿では，IGRT による AI の応用について，我々の研究室での取組についてご紹介しました． 

IGRTでは，治療毎に画像データを取得するため，治療中の経時的なデータを多く蓄積することができ

る．そのため，AIとの親和性が高く，上記で示したように，IGRTに新たな役割をもたらし，放射線治

療をさらに高度化させる可能性を秘めている． 

一方，IGRT 技術は治療（照射）に直結するため，AI を搭載した IGRT 技術の医療現場への導

入には，医療機器としての承認取得という高いハードルが存在し，現時点では臨床応用には至っていな

い．AI搭載の医療機器の臨床応用を実現するためには，膨大な時間と資金が必要となる． 

しかしながら，AI の放射線治療技術への応用は着実に進展しており，将来的な臨床現場への導入は確

実と考えられる．これに伴い，医療従事者に求められる知識や技術も変化していくため，新たな教育体

制や臨床体制の整備が今後の重要な課題となる． 
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治療計画 1（TOP-105-109） 

TOP-105 前立腺癌に対する超寡分割照射における通常分割照射の知識ベースモデルの二次利用可能性

の検討 

過去の治療計画を学習して新規症例に対しての最適化計算のオブジェクトの設定を自動で実施する

知識ベースの治療計画について評価したものである．前立腺癌に対する VMAT では近年寡分割照射・定

位放射線治療が注目されているが，仮に通常分割のプランを学習したモデルにより，寡分割照射・定位

照射のプランが立案できれば，モデル作成の時間を短縮でき，かつ，プランの質を落とさずにプラン以

降ができるので有用であると考えられる．本発表では，通常分割によるモデルにより，品質を維持しな

がら定位照射のプランが立案できており，有用性が示唆されている． 

 

TOP-106 知識ベース治療計画システムを用いたモデル構築における症例選択の検討 : 前立腺患者を

対象とした臨床研究 

知識ベースの治療計画において，モデルの質は学習プランに依存することが知られている．そのため

どのプランを登録するべきかが重要となるが，学習方法は標準化されていない．前立腺癌に対するプラ

ンを PlanIQ によりスコア化して，プランの質でカテゴライズしたプランにより学習モデルを複数作成

した．プランの質が高いモデルを作成した方が，他のプランを学習するよりもより良いモデルを作成で

きている．モデル作成時に，そもそも質の高いプランを学習することが重要であり，プランを見分ける

方法として，PlanIQ の有用性を報告した． 

 

TOP-107 複数の CT-電子密度変換テーブルを用いた既知でない電子密度領域における軸外線量比の評

価 

放射線治療における低密度領域での線量計算の不確かさを明らかにするため，複数の CT-電子密度変

換テーブルを用いて，既知でない電子密度領域での軸外線量比（OCR）を評価したものである．特に空

気に近い低 CT 値に注目し，8 施設の変換テーブルを基に OCR の施設間差を検証した．その結果，OCR

に最大で約 8.2%の相違があり，計算アルゴリズム（AcurosXB）の影響も大きいことが分かった．施設

間での CT キャリブレーションの違いが線量計算に与える影響を可視化した点にあり，今後は低密度領

域においても既知の電子密度値の登録が求められる．将来的には，治療精度の向上と施設間の線量評価

の標準化に貢献することが期待される． 

 

TOP-108 CT シミュレータにおける位置の変位が CT 値と線量計算精度に与える影響 

CT ガントリ内でのファントムの位置変位が CT 値および放射線治療における線量計算精度に与える

影響を評価したものである．ファントムを垂直・水平方向に移動させ，CT 画像の変動幅を解析した結

果，CT 値の変動は主に骨等価プラグで見られたが，いずれも TG-66 や既存研究の基準内に収まるもの

であった．これにより，位置変動による線量計算への影響は臨床上許容範囲内であると判断された．本
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研究の有用性は，CT 装置使用時の位置ズレがもたらす影響を明示的に示した点にあり，再構成関数の

選択による CT 値変動にも示唆を与える．今後はより CT 値の変動に敏感な陽子線治療計画に与える影

響を検証するなど，実際に臨床条件で線量検証を行って定量的に評価することを期待する． 

 

TOP-109 小児放射線治療計画 CT の再構成 FOV が電子密度変換テーブルと治療計画に与える影響 

小児を想定した放射線治療計画において，CT 撮影時の再構成 FOV（DFOV）の違いが電子密度変換テ

ーブルおよび治療計画精度に与える影響を評価した．FOV サイズを 50 cm と 30 cm に設定し，電子密度

変換ファントムと小児用ファントムで CT 値および MU 値の変化を検討した結果，変換係数や MU 値に

有意な差は見られず，DFOV の変化は治療計画上の問題とはならないことが示唆された．この研究の有

用性は，小児特有の体格に応じた最適な FOV 設定が画像分解能向上に寄与しうる点にある．骨領域透

過後の線量変化を検証するなど，更なるデータの追加を進めていただきたい． 

上田 悦弘 (大阪国際がんセンター) 

安井 啓祐 (藤田医科大学) 

 

QA・QC１（演題 TOP-110-113） 

TOP-110 IGRT における治療系座標と透視の照合系座標の一致を改善する方法の検討 

汎用リニアックに標準装備されている位置照合用 kV イメージングは，通常，治療用 MV ビームと直

交する配置となっている．両者の精度比較は，同一ビーム角度で行われるのが一般的だが，体幹部定位

放射線治療などリアルタイム透視下で治療を実施する場面では，直交座標系における Gun-target 方向が

許容範囲内で一致していることを事前に確認しておくことが重要である．本演題では，治療系座標と照

合系座標のズレを補正するソフトウェア「Flexmap」（Elekta 社）に，基礎実験で得られた補正値を反映

させることで直交配置時においても最大約 1 mm の精度向上が可能であることを示した．補正値の編集

は比較的容易であり，ユーザー側での対応も可能とのことであったが，もし本ズレが装置固有の系統的

誤差に起因するものであれば，ベンダーによる対応も今後求められる可能性がある．IGRT 手法の多様

化が進む中，ユーザーからの積極的な情報発信と課題の共有化の重要性を改めて認識させられる興味深

い報告であった． 

 

TOP-111 3D モデルを用いた放射線治療シミュレーションソフトウェアの開発：衝突検知に関する初期

的検討 

汎用リニアックを用いたノンコプラナー照射ではガントリとカウチもしくは患者間の干渉を避ける

ため，実機を用いて事前検証を行うことがある．実機検証は信頼性の高い方法ではあるが，治療室の使

用可能時間やリソースに制限があることから，実運用における負担も少なくないのが現状である．本演

題では，こうした課題を克服すべく，3D モデルを用いた仮想空間内での干渉検証が可能なシミュレー

ションソフトウェアを開発し，その精度を評価した結果を報告している．特筆すべきは，SGRT 用光学

式トラッキングデバイスなどの専用機器ではなく，フリーの 3DCAD ソフトウェアおよびゲームエンジ

ンを用いてシステムを構築している点であり，ユーザー視点に立った実用的な工夫が光る．今回は初期

検討としてハードウェア干渉の精度評価に焦点が当てられていたが，すでに実用水準に達しているとの

印象を受けた．リニアックのモデリング精度も高く，今後は，患者説明や教育用途（学生・新人研修）

への応用も期待される，有意義な報告であった． 
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TOP-112 プラスチックシンチレーション検出器を用いた基準ビームデータ拡張の有効性に関する検討 

プラスチックシンチレーション検出器で測定した 2 cm×2 cm 以下の照射野(以下，小照射野)のビーム

データを⽤いて基準ビームデータ(OPF，PDD，OCR)を拡張した際の TPS の小照射野計算精度を検証し

た演題であった．既出の論文で，プラスチックシンチレーション検出器による類似の報告があるが，今

回は FFF ビームを用いたことが新規性に値したと思われた．小照射野の基準ビーム OPF データを拡張

する事によって，10MVFFF ビームの 1 cm×1 cm 照射野では TPS 計算値と実測値との差が 2.9%から 0.9%

にすることが出来，プラスチックシンチレーション検出器の有用性を示していた．一方，1 cm 照射野よ

りも 2 cm 照射野の方が TPS 計算値と実測値との差が 1%を超えていた．演者は測定誤差と結論付けて

いたが，1cm 照射野の方が水槽の設置やガントリの位置などが効いてくるので，測定に関わる設置誤差

ではない事が考えられた．その他の要因として，チェレンコフ光を考慮したキャリブレーション方法や

3 次元水槽のスキャン速度や繰り返し回数などが要因として考えられるので，引き続き検討を進めてい

ただきたい． 

 

TOP-113 異なる線量計算アルゴリズムを使用した強度変調放射線治療線量検証の有用性の検討 

強度変調放射線治療 (Intensity Modulated Radiation Therapy : IMRT) に対する線量検証⽅法の 1 つとし

て三次元半導体検出器を使⽤した⽅法がある．この演題は従来の治療計画装置 Eclipse（Varian 社製）で

検証用ファントムに対して計算した線量分布と，Sun CHECK Patient (Sun Nuclear 社製) を使⽤した線量

分布を比較し，両者の線量計算アルゴリズムの違いを示し，Sun CHECK Patient が臨床使用に有用であ

る事を確認した内容であった．両者の γ パス率の平均値±SD は Sun CHECK Patient と Eclipse でそれぞれ

97.83±1.69 と 98.1±6 で有意差は無かったが，Head and Neck の症例で有意差が出ていた．一方，Head and 

Neck の症例で Dose Difference では乖離が無かった．演者はこの矛盾をアルゴリズムの違いで起きたと

して考察していたが，義歯の部分で起きたのか，Air の部分で起きたのかなどさらに進んだ考察を進め

ていただきたい．また，3 次元半導体検出器に物質密度を割り当てる事にも言及していたので，引き続

き検討を進めていただきたい． 

加藤 貴弘 (福島県立医科大学) 

佐々木 文博 (手稲渓仁会病院) 

 

QA・QC 2（演題 TOP-177-181） 

TOP-177 ベイズ推定を⽤いたフィルムキャリブレーション値取得の簡略化 

ガフクロミックフィルムの利用に際し，濃度から線量へ変換するために必要なキャリブレーション値

を，過去に取得したデータに基づきベイズ推定により求める手法を研究した報告であった．フィルムキ

ャリブレーションは，フィルムのロット番号が変わる際，また同一ロット番号でもベース濃度が変わっ

た場合に取得する必要があるため，ユーザーにとっては煩雑な作業のひとつである．過去に取得したデ

ータについて放射線量，フィルム読み取り⽅向（縦・横），およびフィルム読み取り時間を説明変数とし，

⼆次の多項式近似モデルを構築された．そのモデルを使用し，検証を行った結果，線量と計測値の⾮線

形関係がより正確にモデル化されていることが確認された．質疑応答にて，まだ実際にこれを臨床では

利用していないと回答されていたが，非常に業務効率があがる手法として期待できるため，今後も研究

の継続いただき，更に精度を向上したモデルを構築され，汎用性の高いものとなることを期待したい． 
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TOP-178 電荷発⽣装置を使⽤した延⻑ケーブルのリスク環境下における線量測定値への影響評価 

様々な使⽤環境下において延⻑ケーブルが線量測定値に与える影響ついて研究された報告であった．

電荷発⽣装置を使用し，厳密な測定環境の管理下で行われており，近年の計測機器類や測定環境を一定

に保つ方法の発展が本研究へとつながっていると考える．⻑さや製造年が異なるケーブルや，測定パタ

ーンとして，1．伸展，2.電源ケーブルと並⾛，3．振動を付与，4．ループ状，5．⼿で振るなどの条件を

設定されており，あらゆる施設の業務環境を想定した実験内容であった．ループ状とした条件で線量測

定値への影響が最も大きかったとのことで，これまでよく聞いたことのある情報が精密に実証されたと

考える．リニアックのビームを用いた方法の場合，出力変動も加わることから評価が難しい事象を，高

精度な電荷発⽣装置を用いることで精度良く評価できることは利点である．電位計ガイドライン 17 に

よる電源ケーブルは高圧ケーブルのことを差しているため，今後その影響に関する評価も併せて実施し

ていただけるとユーザーにとって有益な情報であるため期待している． 

 

TOP-179 温度平衡や湿度管理を考慮した電離箱線量計への事前照射量の評価 

温度や湿度が厳密に管理された状況下で，事前照射（プレドーズ）がどの程度必要かについて評価し

た報告であった．精密な⽔温管理システムと湿度の常時監視下で行われた研究である．計測時の水位の

不確かさを小さくするため，水平ビームにより計測された．100 MU を 30 回，20 秒間隔で連続照射し，

各回の電荷量を外部モニタの電荷量で除し，30 回⽬の値を基準とした相対値として算出したデータに

よる評価であった．ファーマ形 30013，ミニ形 31021 では，変動が±0.05％以内であったのに対し，マ

イクロ形 31022 では 15-20 回程度の照射後にトレンドのない±0.1%未満の変動が見られたとのことで

あった．本報告は，厳密に管理された環境下により行われた結果が報告されたが，線量計の個体差に関

しては検討されていないため，各々の施設で事前照射量の影響を評価したうえで利用してもらうのが望

ましいと考える．有感体積の小さいマイクロ形では，安定した電荷量を計測するために事前照射が重要

であることが再認識できた． 

 

TOP-180 O リング型リニアックにおける照射中断時のガントリ停止位置と X線出力に関する検討 

本演題では，Varian 社製 O リング型リニアック Halcyon を使用して，強度変調回転照射（VMAT）中

の照射中断時におけるガントリ停止位置と X 線出力の再現性と安定性を検討している．10 名の患者を

対象に様々なガントリ角度で照射を中断し，計画値とログファイル値を比較し，全てのガントリ停止角

度および照射 MU の計画値とログファイル値に有意な差は認められない結果であった．この研究は，照

射中断時のガントリ位置と X 線出力の安定性が確認されたことで，患者の体動等で照射を中断した場合

においても Halcyon を用いた VMAT の信頼性を高める知見を提供している．ログファイルを用いた検討

であるため，さらに実測ベースの検討が追加されることにより信頼性が高まると考える． 

 

TOP-181 国産 O リング型リニアックによる 2 次元ファントムを用いた簡易的 X 線プロファイル測定法

の確立 

本演題では，3 次元水ファントムを使用する従来の方法に比べ，2 次元水ファントムを用いることで

設置が簡便になり，測定結果もビームコミッショニング結果と良好に一致し，Annual QA としての定期

的な測定が容易になったことを報告している．O リング型リニアックでは C 型リニアックに比べて 3 次

元水ファントムの設置が非常に困難であり，労力と時間を多く必要とする．簡便かつ正確な X 線プロフ

ァイル測定が可能となり，質疑応答の中で設置時間が大幅に短縮された等の報告もあった．O リング型
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リニアックの精度管理方法は十分に確立されておらず，Annual QA の効率を高めるための貴重な検討で

あり，今後の更なる研究成果に大いに期待が持てる． 

豊田 雅彦 (鹿児島大学病院) 

篠田 和哉 (茨城県立中央病院) 

 

治療計画 2（演題 TOP-182-186） 

TOP-182 前立腺がんにおける Atlas の学習データ数による自動輪郭抽出の精度検証 

本研究は，治療計画支援装置 MIM Maestro の Atlas を用いた自動輪郭描出機能において，事前に登録

するデータ数が主要臓器の輪郭抽出精度に与える影響を，平均一致距離およびダイス係数を用いて評

価した．本報告では，事前登録に必要なデータ数である 10 例と 50 例で同等の精度が得られ，必要最

低限のデータ登録で十分であると報告されている．一方で，本報告には，先行研究および異なる対象

群に対する検討が行われていない． 自動輪郭描出は，放射線治療の精度向上および業務効率化におい

て重要な課題であることから，AI 技術との連携や異機種間での比較検証など，さらなる検討が望まれ

る． 

 

TOP-183 乳房小線源治療用アプリケータを用いた加速乳房部分照射におけるカテーテル再構成の再現

性評価 

本研究は，SAVI アプリケータを用いた加速乳房部分照射の治療計画 Oncentra Brachy において，2 名

の計画者間の再現性を検討した研究であった．小線源治療におけるカテーテルの再構成を含めた停留

点の位置ずれは処方線量や正常臓器の線量評価に影響を与えるため，計画者間の再現性の確認は非常

に重要である．一方で，実際の線源が停留する位置との整合性は評価されておらず，作成された治療

計画の妥当性に関する検証は今後の課題である．胸壁線量の検討など独自性も含まれていることか

ら，研究デザインを改良した新たな知見の提示が望まれる． 

 

TOP-184 超解像 deep learning reconstruction による放射線治療計画 CT が治療計画に及ぼす影響

の評価 

超解像 Deep Learning Reconstruction（DLR）による放射線治療計画 CT が，治療計画に及ぼす影響を

評価した報告である．放射線治療計画に用いる CT 画像は，高空間分解能が望ましいが，被ばく線量の

増加が懸念される．本報告では，CT 装置として Aquilion ONE / INSIGHT Edition を使用し，CT 値‐電

子密度変換ファントム RMI467 を用いて，管電圧 120 kV，FOV500 mm，mAs 値を 50〜500 に変化させ

て撮影を行っている．再構成法としては FBP，Hybrid-IR，超解像 DLR の 3 種類を用い，CT 値‐電子

密度変換テーブルを作成して比較している．すべての条件において HU 値はほぼ一致していたと報告

されている．また，治療計画支援ソフトウェア MIM Maestro を用いて複数の電子密度ロッドの輪郭を

自動抽出し，Dice 係数を求めて類似度の比較を行っている．肝臓等価ロッドにおいては，Hybrid-IR お

よび超解像 DLR の Dice 係数が高値を示したと報告されている．被ばく線量を増加させることなくノイ

ズを低減し，空間分解能を向上させる再構成法は有用であると考えられる．小さい正常臓器および腫

瘍の辺縁描出精度の向上や，軟部臓器の自動輪郭抽出精度の向上にも寄与すると考えられ，今後のさ

らなる続報を期待したい． 
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TOP-186 多発脳転移に対するシングルアイソセンタ照射における新たな線量指標の有用性評価 

定位放射線治療における線量指標の一つである Riet-Paddick 指数（CIRP）は，局所制御率と相関があ

るものの，ターゲット内の線量変化および体積依存性に関して課題を有していた．本報告では，Vadim

らが提案した CIdexpが，多発脳転移に対するシングルアイソセンタ照射の線量指標として有用であるか

を検討したものである．治療計画は Eclipse ver．15.5，6 MV-FFF X 線（Acuros XB）を用いて立案し，

臨床プランと誤差付与プランを作成した．CIRPおよび CIdexp は SunCHECK で算出し，両指標の検出感

度を比較している．アイソセンタを変位させた誤差プランに対しては，CIRPおよび CIdexp の両者で検出

が可能であったが，MLC を変位させた誤差プランにおいては，CIRPよりも CIdexpの方が，検出感度が

良好であったと報告されている．本報告における誤差付与は，アイソセンタでは 0.50〜1.50 mm であ

り，MLC では 0.10〜0.25 mm であった．もしアイソセンタに対しても MLC と同様の誤差幅で付与して

いた場合，検出感度に差が生じた可能性があると考えられる．自施設の治療方法に適した治療計画評

価法を検討することは非常に重要であり，本報告はその一助となる有用な知見であると評価できる．

体積依存性の検討など，本報告では扱われていない点についてのさらなる続報を期待したい． 

⻘⼭ 貴洋 (愛知県がんセンター病院) 

岡 善隆 (福島県立医科大学附属病院) 

 

線量評価１（演題 TOP-248-252） 

TOP-248 国産 Oリング型リニアックでの動体ファントムと三次元検出器を用いた動体照射精度の検証 

国産 O リング型のリニアックにおける自由呼吸下での動体照射精度に関して 3 次元検出器を用いて

検証する内容であった．放射線治療計画装置で作成された模擬腫瘍には Internal margin が設定され，そ

れと同値の振幅の正弦波にて 3 次元検出器を動かすことで Interplay effect の影響を VMAT と Conformal 

Arc で比較検討されていた．比較の基準となるものはガンマパス率であり，動体速度や移動距離を周期

と振幅を変更させることで再現し，2 種の分割回数（1 回と 3 回）での比較が行われている．ガンマパ

ス率 95％（3％/2 ㎜，TH10％）と 90％が分岐点とされた結果では，Conformal Arc は一例を除き概ね 95％

を上回っており，VMAT では負荷をかけるごとに段階的にパス率の低下がみられていた．今回検討いた

だいた条件設定では VMAT における Interplay effect がある条件下から大きく影響してくることが報告さ

れた．報告の中でも提示されたが分割回数を増やすことによる平均化や，今後の検討課題としてのその

他の要素を今後も検討いただき，今回同様に臨床使用に有用な情報提供を期待したい． 

 

TOP-249 治療計画装置における基準ビームデータと測定データによる小照射野モデリング結果の比較

評価 

基準ビームデータ（RBD）による 3 ㎝以下の小照射野の計算精度に関して，異なる線量計を用いて比

較検討された内容であった．比較対象は出力係数である Output factor（OPF）であり，治療計画装置では

3 種類のモデリング結果を用いて OPF が計算されていた．測定による OPF は W2 シンチレータによる

OPF を真値と仮定し，TRS483 で示されている照射野サイズ毎の補正係数を参考に補正係数の和が 1.000

に近づく線量計 2 種を選択，この 2 種の測定結果の平均値による OPF は W2 シンチレータとも概ね 1％

以内での一致が報告された．これらの結果はすべての線質において治療計画装置が算出する OPF と比

較され RBD を用いたモデリングにおける小照射野の有効性が示されたとのことであった．今後の検討

課題としては照射野形状によっては W2 シンチレータのチェレンコフ光の補正が必要な場合も考えられ

ることや，照射野形状に由来する測定結果に影響を与える因子の個々を検討する必要性があるとのこと
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だった．急速に普及してきた RBD の検討を今後も期待したい． 

 

TOP-250 In-vivo dosimetry を活用した極小照射野を伴う転移性脳腫瘍定位照射の患者 QA の提案 

転移性脳腫瘍の定位放射線治療の患者線量検証における，二次元ガンマ解析と三次元の線量分布評価

の比較をした内容であった．直径 1 cm の PTV 球を作成し，その PTV に対して 6X-FFF による VMAT プ

ランを作成した．さらに，そのプランにおける MU 値に-2 %から+2 %，MLC 開度に 1〜4 mm の誤差を

加えたプランも作成し，その際の線量検証の結果を評価した報告であった．今回の発表は，限られたパ

ターンでの評価であったので，今後さらに様々なパターンを評価して，線量検証の実態を明らかにして

いただくことを期待したい． 

 

TOP-251 電子線の線量校正に用いられる各種補正係数の多施設調査 

電⼦線の標準計測で使われる R50，⽔吸収線量校正定数，各種補正係数を他施設（65 施設）から収集

し，その実態を発表したものであった．多施設で使用エネルギーにばらつきはあったが，各種データの

変動係数は 1％以下であった．座長の知る限り，ここまで大規模なデータを報告した論文はなく，現場

にとって有用な報告である．この結果の論文化を期待したい． 

 

TOP-252 声門癌の放射線治療に対する自作水晶体防護具を用いた水晶体被ばく線量低減効果の評価 

声⾨癌の放射線治療に対する照射野外線量を低減するための⽔晶体防護具による被ばく線量低減効

果を評価した報告であった．声⾨部に 2.25 Gy/fr を投与するプランを 4 種類（くさび⾓度 15°の Physical 

wedge または Enhanced dynamic wedge を⽤いた左右対向 2⾨照射，Half-arc VMAT，Full-arc VMAT）作

成した．⽔晶体防護具は低融点合⾦により作成し，⽔晶体の形状とガントリヘッドからの散乱線の⼊射

⽅向を考慮して，⽬の表⾯と側⾯を覆う設計とした．防護具により全てのプランで吸収線量が 25%以上

低減した結果であった．現場にとって有用な報告であり，この結果の論文化を期待したい． 

 

大坂 暁胤 (新潟県立中央病院) 

木下 尚紀 (森ノ宮医療大学) 

 

照射技術 1 (演題 TOP-253-254) 

TOP-253 CBCT（収集角度 200 度未満）の有用性の検討 

収集角度 200°未満の CBCT 画像において歪みを生じることが知られている．本検討では，収集角度

を 120°から 150°まで変化させた際に生じる幾何学的歪みについて均一性および撮影開始時のガント

リ角度と回転方向について詳細に評価した．収集角度が小さくなるほど歪みを生じる範囲が大きくなり，

撮影開始時のガントリ角度に依存した規則性が見られた．ただし，歪みを生じる範囲は限定的であり，

その特性を理解することで臨床において正確な画像照合の可能性が提示された．臨床上有用なデータで

あり，今後，論文等でご報告いただきたい． 

 

TOP-254 呼吸同期照射の遅延時間測定および治療ビームとイメージング系の遅延時間差が照射位置精

度に及ぼす影響の検討 

本研究は，呼吸同期照射における治療ビーム照射および照合画像取得時に生じる遅延時間の差を評価

し，治療系および画像系の遅延時間が及ぼすターゲット位置への影響について詳細に検討した．画像系
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においてはパルス間の幅が治療系よりも大きく，トリガーのタイミングによって遅延時間が大きくなる

ことがあり，ばらつきも大きくなった．また，遅延時間が及ぼすターゲットの変位については，治療系

および画像系ともに呼気位相における治療を想定した場合，同じ方向に変位を伴うことが報告された．

引き続き検討いただき，さらなる発展に期待する． 

 

TOP-255 体表面画像誘導放射線治療装置を用いた呼吸同期照射における遅延時間の評価 

同期照射中に撮影したファントムの EPID 画像を解析して，SGRT システム (Align-RT) による同期照

射の遅延時間を検証した報告であった．本研究では，SGRT の ROI サイズを変えた場合と RPM の結果

が示され，ROI が大きいほど Beam-ON の遅延時間は長く，Beam-OFF では違いが僅かであった．また，

RPM では SGRT の半分程の遅延となった．外部インターフェースボードを経由する SGRT は，TrueBeam

の電気的周波数よりも周期が長く，RPM 程の遅延時間に収めることは不可能になる．臨床的に使用不可

能ではないが AAPM TG-302 ガイドラインを満たせないため，SGRT による同期照射では十分に検討さ

れることが推奨されていた．Align-RT を使用する施設は，参考になる報告であったと思われる． 

 

TOP-256 膵癌 SBRT における体内の動きが呼気止め分割 CBCT 画像に与える影響の評価 

CBCT は撮影時間が長く，臓器の呼吸性移動や蠕動運動がアーチファクトとして画質に大きな影響を

与える．本研究は，膵癌SBRTへの画像改善手段として分割撮影による EP-CBCT (Expiratory Phase-CBCT) 

を行い，その有効性を評価する報告であった．膵臓の動きを代替する方法として，右腎下縁髄質から背

側脂肪にかけての画像プロファイルの傾きを数値化して，計画 CT と EP-CBCT の比較を行っている．

結論として，EP-CBCT は計画 CT に十分近い画像を得ることが出来ると報告されている．残念に感じた

のは，EP-CBCT による画像への影響評価を目的としながら，通常の CBCT に対する優位性が未評価な

ことである．また研究目的が，膵臓の照射位置再現に寄与できる事を証明するのか，それとも従来の

CBCT に対する画質改善の評価なのかが不明瞭で，全体的に分かり難い構成になってしまっている点で

あった．研究目的や意義は理解できるので，EP-CBCT の有効性に言及する形式で研究を継続して頂き，

違う視点から報告して頂くことを期待したいと感じた． 

廣瀬 貴章 (九州大学病院) 

根本 幹央 (自治医科大学附属病院) 

 

その他（演題 TOP-257-260） 

TOP-257 乳がん術後補助療法時における放射線抵抗予測のための新規バイオマーカーの探索 

 本研究では，HER2 陰性乳がん細胞株（MCF7）および HER2 陽性乳がん細胞株（BT474）を用いて，HER2

発現とスフィンゴミエリン（Sphingomyelin：SM）産生ならびに放射線抵抗性との関連性について検討が

行われた．HER2 陽性の BT474 細胞は顕著な放射線抵抗性を示し，また，放射線照射（1〜4 Gy）後の培

養上清におけるスフィンゴ脂質濃度は，HER2 陰性の MCF7 細胞と比較して約 5〜7倍高値を示し，有意な

上昇が認められた．これらの結果から，HER2 陽性細胞はスフィンゴ脂質の高発現を促進する環境にある

と考えられ，細胞活性化を介して放射線抵抗性の獲得に寄与している可能性を示唆した報告であった． 
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TOP-258 一般撮影用の FPD とポータブル撮影装置を用いた全身撮影における肺の遮蔽ブロックの位

置確認方法の検討 

全身照射（TBI）における肺への線量低減を目的とした鉛製肺遮蔽ブロックの使用に関連し，その位

置確認の方法として，MV-X 線に対応した CR や EPID の活用が報告されている．しかし，現在多くの

施設で広く使用されている FPD は MV-X 線に非対応であり，FPD を用いた遮蔽ブロックの位置確認

に関する報告はこれまで存在していなかった．本研究では，一般 X 線撮影用の FPD およびポータブル

撮影装置を用いた遮蔽ブロックの位置確認手法の有用性について検討がなされ，その実用性が示唆さ

れた．研究には一定の制限が認められるものの，臨床現場への応用可能性を有する有益な知見が含ま

れており，今後の学術的報告が期待される内容であった． 

 

TOP-259 乳房放射線治療に用いる計画 CT 撮影線量の最適化 

本研究は，乳がん放射線治療計画における CT 撮影線量の最適化を目的として，AEC の設定値を変

化させた撮影プロトコルを評価し，線量低減の有効性と画像の診療有用性を検証したものである．人

体ファントムと電子密度ファントムを用い，Dice 係数や CNR，CTV D95 の変化を詳細に解析し，従

来の約 18.7％にまで線量を低減しつつ，輪郭描出や線量計算への影響を最小限に抑えるプロトコルの

有用性が示された．新規性として，RP-CT の撮影プロトコルの変更による具体的な被ばく線量低減効

果を定量的に示した点が評価できる．先行研究では示されていなかった実用的な運用変更に踏み込ん

でいる点が特徴的であり，臨床現場での応用可能性も高いと考えられる．今後は他施設での再現性

や，異なる CT 機種に対する適用性の検証が期待される． 

 

TOP-260 体幹部用 shell 固定治具の開発 

本発表では，体幹部照射時の安定した治療体位の確保を目的として開発された，新たな shell 固定

具と装着治具について報告された．従来の固定ボードに依存せず，吸引式固定具と shell 材を容易にか

つ正確に位置づけできる独立型の 4 台の治具構成が提案された．治療部位に応じた柔軟な固定法が可

能となり，作業性の大幅な向上と治療精度の向上が示された．開発された固定法は，shell 装着時の照

射部位への影響を最小限に抑えつつ，設置自由度の高い構造である点が新規性として際立っている．

特に，線量分布への影響が無視できる程度であるとの設計思想は，臨床現場での実用性を高める要素

である．さらなる臨床応用や治療結果への影響評価を含めた報告が今後望まれる． 

佐々木 幹治 (徳島大学) 

井上 裕之 (大阪市立総合医療センター) 

 

照射技術Ⅱ（演題 317-320） 

TOP-317 下部胸椎 stereotactic body radiotherapy における治療中の呼吸性移動が線量分布へ与え

る影響 

下部胸椎に対する stereotactic body radiotherapy（SBRT）において，呼吸による横隔膜の動きが線量分

布にどの程度影響するか評価し，Average CT 画像を用いることで呼吸性移動に対して堅牢性の⾼い治療

計画を⽴案できると結論付けた報告であった．今回は，2 回転や 3 回転の回転照射であったが，前後の

円弧照射などでは結果が異なる可能性がある．別の照射角度を用いる場合の影響など，引き続きの検討

を期待する． 
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TOP-318 CBCT を用いた適応放射線治療に向けた transformer ベースの画質改善 

言語モデルを基にした，画像生成モデルである transformer を使用して，汎用型リニアックの CBCT 画

像の画質改善を行い，即時適応放射線治療(Online adaptive radiation therapy: ART)の実現に繋げることを

目標とした取り組みの報告であった．ART を実施する上では，非常に有用な検討であると考える．今回

は頭頚部におけるアーチファクトを低減する評価であったが，直腸ガスによるアーチファクトなど別の

部位に適応できるかも今後検討していただきたい． 

 

TOP-319 強度変調放射線治療（intensity modulated radiation therapy）における頭部用固定シェル

の固定精度に関する研究 

Tomotherapy を⽤いた MVCT を基に，固定シェルのベースプレート(Accufix-flat，Accufix-tilt，Type S)

と固定シェル(Aquaplast，Fibreplast)により構成された flat，tilt，type S の固定システムの精度を比較した

研究であった．Tomotherapy では Yaw や Roll の補正は実施しない．6 軸の影響に関する報告はあるもの

の，頭尾，左右，腹背そして Pitch に限定した固定精度の評価は，Tomotherapy を使用する施設において

有用な報告であったと考える． 

 

TOP-320 金マーカ留置後の前立腺癌 VMAT における室内設置型 IGRT システム とコーンビーム CT 

を用いた金マーカ変位量と直腸ガスの検討 

前⽴腺癌に対する強度変調放射線治療において，ExacTrac と CBCT の画像から，⾦マーカ変位量と直

腸ガスの解析を⾏い，ExacTrac のみでの前⽴腺癌に対する放射線治療が実施可能か検討した報告であっ

た．CBCT を省略することで，患者の被ばく低減とスループットの向上につながり，患者利益の観点か

らも有用な報告であったと考える． 

 

宮崎 正義 (大阪はびきの医療センター) 

小林 大輔 （筑波大学附属病院) 
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－地域・職域研究会紹介－ 

       

鹿児島県放射線治療技術研究会の紹介 
 

鹿児島大学病院 奥好史 

 

 

 

1. はじめに 

放射線治療部会の皆さん, はじめまして. 鹿児島県放射線治療技術研究会を代表して，ご紹介させて

いただきます. 鹿児島県は、日本列島の最南端に位置し, 種子島，屋久島，奄美大島をはじめとする多

くの離島があり、これらの島々の総面積は全国一位になるなど、全国でも有数の離島県です． 放射線治

療装置を保有する施設は、本土に 12施設, 離島に 1施設となっており, 当研究会も本年で第 27回を迎

えます. これまでの諸先輩方をはじめ, 各施設の多くのスタッフの協力もあり, これまで発展してきま

した.  

 

2. これまで 

鹿児島県放射線治療技術研究会は，公益社団法人鹿児島県診療放射線技師会に所属する研究会で運用

され，鹿児島県内の 13の放射線治療施設の関係者の方々と協力して運営してきましたが，現状は独立し

た研究会として毎年 1回の研究会を実施しています． 

 

2－1．鹿児島県放射線治療技術研究会のはじまり 

全国的な誤照射事故(2000年頃)が取り沙汰され, この契機に十分な教育体制・研修の欠如や熟練者で

も陥る可能性もある背景から, 鹿児島県の実情把握と標準化を目指して発足したのがきっかけです． 

2007 年に当時の研究会世話人は小林保浩先生（当時，鹿児島大学医学部・歯学部附属病院）が発起人と

なり立ち上げ，その後，強力なリーダーシップを発揮されました豊田雅彦先生（鹿児島大学病院 診療放

射線技師長）に引き継がれ，2019年に小生に交代して 

現在に至ります． 

当初は, 実機講習で県内施設の外部放射線治療装置 

の訪問出力測定調査による相互確認や品質保証(QA)/ 

品質管理(QC)のプログラム策定やコミッショニングの 

確認作業, 座学講習で話題提供や研究発表, 研究会後 

は飲み会で大いに盛り上がっていました(図 1). 
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こうしてみますと，当県内の放射線治療技術の標準化を目指して横のつながりを大事にしながら取り組

んでまいりました. 歴史の長さと，バトンの重責を感じるとともに，諸先輩方の歴史と DNA を次の世代

に受け継いでいくことこそが一番の使命であると感じます． 

 

2－2．他研究会とのつながり 

南九州地方を基盤として活動している研究会に, 南九州地域放射線治療技術合同研究会(代表世話人; 

丸山雅人先生)があります.  

当研究会の翌年の 2008年に発足され今年度で第 19回 

を迎えますが, 熊本県・宮崎県・鹿児島県の 3県合同 

で, 各県持ち回りで毎年 1回の 2月開催で研究会を行 

っています(図 2). 

当研究会の世話人の中には, 研究会の世話人を兼任し 

てもらいながら, 各研究会の開催時期や内容が重複し 

ないように取りまとめる役割を担いで, 常に情報共有 

できる体制を整えています. 

 

2-3． 2つの転機 

当研究会の歴史を振り返ると, これまでに大きな転機が 2度あったことがわかります. 

まず一つ目は, 小生に代表が交代したタイミングで, 世話人の若返りが図られました. 重鎮の先生方に

は監事として残っていただき, 各施設の世話人を中堅・若手の構成に交代しました. この時期は, コロ

ナ禍真っ只中で現地開催を余儀なく諦めざるをえませんでしたが, 若い世話人のパワーの元, 何とか

ハイブリット開催へ切り替えることができました, このタイミングで HPの立ち上げ(図 3)や SNS等を通

じて, 参加できない先生方への情報共有発信を図りました.  

 

 

図 3. 鹿児島県放射線治療技術研究会のホームページ 

 

次の転機は, 前代表の豊田雅彦先生のご尽力をいただき, 関西地区との交流がなされ, 当研究会の世
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話人（大阪国際がんセンターの乾翔輝先生）に入っていただき, 少しずつですが活動拠点を広げること

ができました.  

さらに九州放射線治療コミュニティや九州 2地区 

RTT認定全国統一講習会当等, 世話人代表は九州の 

研究会等を繋ぐ役割も担うようにしています(図 4).  

コロナ禍以前は, 医師・看護師・学生・メーカー等,  

いろいろな方が参加して頂き, 100名を超える賑やか 

な研究会でしたが, コロナ禍以降は 地方だけではなか 

なか限界もあり, 他地方の先生方との交流が図られる 

ようになり, 先進的な技術や最新情報を取り入れるこ 

とができる研究会に発展してきました.  

 

3. 現状 

基本的なプログラムは, 午前中に施設見学（各施設の品質管理や品質保証の紹介・共有）, 午後より

研究発表, 施設紹介, 教育講演, メーカーからの最新情報, 最後に情報交換会（コロナ禍はなしでした

が, 現在は復活!!）です(図 5). 当研究会は, 最新の放射線治療・技術に関する知見はさることながら, 

施設間の横の繋がりを大切にしており, 治療部門への初学者からローテーション担当者, 部門責任者ま

で和気会い合いに語れる研究会を目指しながら発足・活動しています.  

主な活動内容は, 以下を中心として活動しています. 

• 定期的な研究会の開催：1回/年に県内の情報共有, 放射線治療に関する最新の知見や技術を学ぶ

ための研究会を開催 

• 情報共有とネットワーキング：会員間での情報交換や, 他の医療機関との連携を促進 

• 技術向上のための研修：放射線治療技術の向上を目指し, 実技研修や講習会を実施 

ポリシーとして, 地域医療の質向上と放射線治療技術の発展に貢献し, 放射線治療に関心のある医療従

事者の皆様の参加を誰でも問いませんので, いつでも気軽にお声掛けください！！ 

  

図 5. 研究会の様子 
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4. これから 

これまでの研究会の大きな流れとして，全国的にもハイブリッド開催がなされ, いつでもどこでも参

観できる時代になってきたと感じています. 当研究会もマンパワーの問題もさることながら, 実習形式

は小規模なものになっていますが，発表・講演の聴講のみでなく実技を通して具現化できるようになる

ことが大事と考えていますので，できるだけ実習形式を組み込むようにしていけたらなと思っています．

また, 専門技師資格や医学物理士の取得推進のために合格体験記(相談含む)を交えながら, 興味を持っ

てもらえるような内容も盛り込むようにしています. 

昨今のコロナ禍の影響もあり, 若手の初めての研究発表の場や学会発表のレベルには達していないも

のの外部の方の意見を伺いたいというレベルの発表をする機会が失われつつある状況を危惧しています．

当研究会も, 立ち上げ当初から世話人一同で内容のブラッシュアップがなされ，昨年には開催時間が 5

時間を超え，100 名を超える方からご参加をいただいており, 大変ありがたい反面，地域の研究会とし

て，あくまでも地域に根差して横の繋がりを大事にすることに十分配慮が必要であると考えます．とも

に悩み，苦労を共有できる仲間や, 困ったときに頼れるつながりは常に存在してほしいと願います． 

 

5. 最後に 

当研究会がさらに発展し，次の世代に良い形でバトンを引き継いでいくためには，DX 化を推進し世話

人の負担軽減を図りながら, 困難な課題をひとつずつ解決していかなければならないと思っています．

今後とも，当研究会についてご指導ご鞭撻のほど，どうぞよろしくお願いいたします． 

紙面を作成するにあたり研究会の歴史と変遷を学ぶ大変よい機会となりました．作成に際しご助言をい

ただきました関係者・世話人の皆様に深く御礼申し上げます．最後になりましたが，このような機会を与

えていただきました日本放射線技術学会放射線治療部会の先生方に深く感謝申し上げます． 
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Assessing the Quality and Reliability of ChatGPT's Responses to Radiotherapy-Related Patient Queries: 

Comparative Study With GPT-3.5 and GPT-4 

 

放射線治療に関する患者質問に対する ChatGPT の回答の質と信頼性の評価：GPT-3.5 と GPT-4 の比較

研究 

 

Ana Grilo, Catarina Marques, Maria Corte-Real, Elisabete Carolino, Marco Caetano, JMIR Cancer, 11, 

e63677, 2025, doi: 10.2196/63677. 

 

【背景・目的】 

放射線治療はがん患者の約半数が受ける治療法である．しかし，その治療内容やプロセス，副作用に

関する情報は非常に専門的で複雑であり，多くの患者が十分に理解できていないことが報告されている．

放射線治療の理解不足は，患者の不安や治療への不信感につながる可能性があり，正確で丁寧な情報提

供の重要性が指摘されている． 

これまでにも，パンフレットやビデオ教材，ウェブサイトなどを活用した教育的介入により，患者の

理解や満足度の向上が図られてきたが，それでもなお，個別に寄り添った双方向的な情報提供には限界

がある．特に，患者が治療のさまざまな段階で抱える具体的かつ多様な疑問に，柔軟かつ即時に対応で

きる体制の整備は容易ではない． 

こうした中，近年注目を集めているのが，OpenAI によって開発された ChatGPT に代表される大規模

言語モデル（LLM）の活用である．ChatGPTは，自然な対話形式で多様な質問に答えることができる AI

ツールであり，教育，医療，ビジネスなど様々な分野での応用が進んでいる．先行研究では，ChatGPT-

3.5が医学生向けの問題や基礎的な医学知識の説明などにおいて一定の成果を示していたが，専門性の高

い臨床分野，特に放射線治療のような領域において，どの程度有効かは明らかにされていなかった． 

さらに，2023年には改良版である ChatGPT-4が登場し，精度や自然な表現の面での性能向上が報告さ

れているが，このモデルを医療現場，特に放射線治療領域で評価した研究はまだ存在していない． 

本研究は，放射線治療に関する代表的な患者質問 40項目に対する ChatGPT-3.5および GPT-4の回答を

比較し，それらの質と信頼性を多職種の医療専門職が評価することで，LLM が臨床的にどの程度有用か

を明らかにしようとするものである． 

 

【方法】 

本研究では，放射線治療に関する患者からのよくある質問に対する ChatGPT の回答の質と信頼性を評

価するために，2 つのステップで調査を行った．まず，代表的な質問項目の選定を行い，次にその回答

内容を GPT-3.5および GPT-4で生成し，それらを専門家が評価した． 

・質問の選定 

 対象となる質問は，患者が放射線治療を受ける際によく抱く疑問を収集するため，米国放射線腫瘍学

会（ASTRO）や，がん関連医療機関の FAQ ページから内容を抽出した．選定にあたっては，医学的正

確性，実用性，患者にとっての関心度を考慮し，最終的に 40項目の質問が選ばれた．これらの質問は，

放射線治療の概要，治療中の実践的な側面，副作用およびその管理に関する内容を含み，以下の 3 つの

カテゴリに分類された： 

1. 放射線治療の全般に関する質問（1～14） 

例：「放射線治療とはどのような治療ですか？」，「放射線治療は私の健康にどのような影響を与

えますか？」 

2. 治療中の体験や実践に関する質問（15～29） 

例：「放射線治療中に仕事を続けることはできますか？」，「放射線治療 1回の所要時間はどれく

世界の論文シリーズ 
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らいですか？」 

3. 副作用や治療後のケアに関する質問（30～40） 

例：「放射線治療の副作用にはどのようなものがありますか？」，「放射線治療後に疲れを感じる

ことはありますか？」 

これらの 40項目は，どれも放射線治療現場において患者から直接質問される機会が多い実用的な内容

である．  

・回答の生成 

 選定された 40の質問を，それぞれ ChatGPT-3.5（2023年 3月版）および ChatGPT-4（2023年 5月版）

に英語で入力し，出力された回答を収集した．質問文は同一の書式・内容で両モデルに提示され，回答

に対してはユーザー側で修正や補足は一切加えず，初期出力そのままを評価対象とした． 

・回答の評価 

 収集した計 80の回答（40質問 × 2モデル）について，放射線腫瘍医，医学物理士，看護師，教育者な

どの専門職 16名が独立に評価を行った．評価指標として，以下の 5項目が用いられた： 

1. Global Quality Score（GQS）：回答全体の質を 5段階で評価 

2. Accuracy（正確性）：医学的に正しい内容であるか 

3. Clarity（明瞭性）：文章がわかりやすく，読解しやすいか 

4. Empathy（共感性）：患者への配慮や心情への理解が含まれているか 

5. Harmfulness（有害性）：不正確または誤解を招く内容が含まれているか 

 GQS以外の 4項目については，記述統計とWilcoxon検定を用いて，GPT-3.5と GPT-4間の評価差が検

討された．また，有害性の観点からは，各回答に有害な情報が含まれているかどうかを，Yes/No で判定

し，頻度の比較が行われた． 

【結果】 

本研究では，ChatGPT-3.5および GPT-4が出力した計 80の回答（40質問 × 2モデル）について，16名

の専門職による 5 項目の評価が行われた．その結果，すべての評価指標において GPT-4が GPT-3.5 を統

計的に有意に上回るスコアを記録した． 

・全体的な評価結果 

まず，総合的な回答の質を示す GQS の平均スコアは，GPT-3.5 が 3.44，GPT-4 が 4.29 であり，GPT-4

の回答の方が明確かつ高品質であると評価された．その他の評価指標についても以下のとおりである： 

 

評価項目 GPT-3.5（平均 ± SD） GPT-4（平均 ± SD） 有意差（P値） 

GQS（総合評価） 3.44 ± 0.78 4.29 ± 0.59 P < .001 

Accuracy（正確性） 3.88 ± 0.69 4.45 ± 0.54 P < .001 

Clarity（明瞭性） 3.88 ± 0.75 4.50 ± 0.57 P < .001 

Empathy（共感性） 3.66 ± 0.88 4.63 ± 0.53 P < .001 

 

とくに共感性では GPT-4 の向上が大きく，GPT-3.5 よりも患者の不安や疑問に寄り添った表現がより

多く含まれていたことが示唆された． 

・有害情報の含有率 

誤った内容や誤解を招く可能性のある表現については，GPT-3.5 では 11 件（27.5%）の回答に有害と

判断される情報が含まれていた．一方，GPT-4では 4件（10.0%）にとどまり，GPT-4の方が情報の安全

性にも優れていることが明らかとなった． 

有害と判定された GPT-3.5 の回答の一例として，「副作用はすべて一時的で軽度です」といった断定し

すぎた説明があり，患者に誤った安心感を与えるリスクがあると指摘された．一方，GPT-4 はより中立

的で個別性を考慮した表現が多く，「副作用の出方には個人差があり，医師がその都度評価します」な

ど，誤解を避ける努力が見られた． 

・評価者間の一致 

16名の評価者間のスコア分布にも偏りは少なく，全体として GPT-4の方が一貫して高い評価を得ていた．

放射線医療に従事する複数の専門職（医師・看護師・教育者）が含まれていたことからも，現場の多角

的な視点で妥当性が確認されたと言える． 
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【考察】 

本研究は，放射線治療に関する代表的な患者の質問に対し，ChatGPTの 2つのモデル（GPT-3.5および

GPT-4）が生成した回答の質を比較・評価したものである．結果として，GPT-4 は正確性，明瞭性，共

感性，全体的な質のいずれにおいても GPT-3.5 を統計的に有意に上回り，全体としてより優れた応答を

示した．特に注目すべきは，GPT-4 が共感性において高く評価された点である．放射線治療を受ける患

者は不安や恐怖を抱えていることが多く，こうした心理的側面への配慮を含んだ応答が重要となる．

GPT-4 の回答には，患者の不安に寄り添うような表現や，安心感を与える口調が多く見られ，人間的な

対応に近づいていることが示唆された．一方，GPT-3.5 は断定的または曖昧な回答が目立ち，場合によ

っては誤解を生む可能性がある表現も含まれていた．さらに，安全性の観点からも GPT-4 は優れていた．

有害な情報や誤情報と判断された回答の割合が GPT-3.5 では約 27%だったのに対し，GPT-4 では 10%と

大幅に低下しており，リスクの少ない情報提供が可能であることが確認された．ただし，GPT-4 であっ

ても完全ではなく，一部に不正確な情報を含む回答が存在した．また，本研究は英語環境に限定されて

おり，非英語話者に対する応答の妥当性は今後の検討課題である．さらに，評価は医療専門職によって

行われたものであり，実際の患者がどのように受け止めるかについては今後の調査が必要である．将来

的には，ChatGPT のような大規模言語モデルを臨床現場に応用する際に，医療者による監修を加えたハ

イブリッドな運用や，対話形式での応答，患者視点からの受容性評価などを含むさらなる研究が求めら

れる． 

 

【結論】 

本研究は，ChatGPT が放射線治療に関する患者の質問にどのように応答するかを評価した初めての試

みであり，特に GPT-4 が GPT-3.5 よりも高品質な回答を提供できることを示した．GPT-4 の回答は，正

確性，明瞭性，共感性の各面においてより優れており，全体的な質も高かった．また，GPT-4 は誤情報

や有害な内容を含む頻度も低く，安全性の面でも信頼できる結果を示した．このことから，GPT-4 は放

射線治療における患者教育の補助的なツールとして活用できる可能性があると考えられる．ただし，完

全に正確とは限らないため，専門職による内容の監修は不可欠である．今後は，実際の臨床現場での実

装や，患者による受容性評価，他言語環境での有効性の検証などが求められる． 

 

【コメント】 

この紹介した論文は，我々が近年利用する ChatGPT のような LLM が放射線治療における患者対応の

補助ツールとして利用可能かどうかを，定量的に評価した先駆的な試みである．従来のようにLLMを専

門試験で評価するような研究とは異なり，実際の臨床質問に対して生成された文章の質と安全性を，多

職種の医療従事者が評価した点で臨床的実用性の高い研究であるといえる．特に GPT-4 は，誤情報の少

なさに加え，共感的かつ柔らかい口調によって，患者の不安に寄り添う姿勢が示されており，患者説明

の質を高める補助ツールとして有用な結果を示した．本研究で用いられた 40の質問は，「治療中に仕事

はできるのか？」「治療の機械は音が出るのか？」「脱毛はあるのか？」といった内容で，放射線技師

が日常的に現場で受ける質問と近いと言える．一方で，この論文は同時に，ChatGPTを臨床的に”そのま

ま使う”ことのリスクについても示唆している．たとえば，GPT-3.5 では「すべての副作用は軽度で一時

的」といった，実際には断定すべきでない表現が見られ，また，GPT-4 においても数件ではあるがあい

まいな表現が含まれていたと報告されている．放射線治療における患者説明は，治療方針や合併症の可

能性，予後など個別の臨床的な背景や価値観に応じて慎重に行う必要があり，LLM による回答だけでは

対応しきれない場面も多い．つまり，ChatGPT は”臨床現場での説明の完全な代替”ではなく，放射線技

師による患者対応を支える“補助的な資料作成ツール”としての位置づけが最も適切であると考えられる．

現場で使用する際は，常に医療者による事前確認を前提とすべきであり，生成された文章をそのまま患

者に提供するような運用は現状難しいかもしれない． 

今後は，最新のGPT-4.5の利用や日本語による評価，放射線治療分野により特化した LLMの開発，あ

るいはチューニングされたモデルの評価など，さらに実用性の高い研究が必要である．放射線技師が担

う説明業務の質と効率を両立させるための選択肢の一つとして，LLM の活用は現実味を帯びつつあるが，

その限界やリスクを正しく理解した上で利用することが望ましいと言える． 

 

宮川 真（茨城県立医療大学） 
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A method for confirming a third‐party assay of I‐125 seeds used for prostate implants 

前立腺永久挿入に使用される I-125線源の第三者による検証方法 

 

John S Muryn , et al. J Appl Clin Med Phys. 2016 Nov 24;18(1):53–58. 

 

本論文は電離箱式線量計を使用し，使用施設に於いて前立腺癌密封小線源永久挿入治療（シード治療）

で用いる 125-I線源の線源強度検証を行った研究である． 

 

 

【本論文を選んだ理由】 

前立腺癌密封小線源永久挿入治療（シード治療）に用いる 125-I シード線源について，AAPM TG レ

ポート 40，56，64 では，製造販売業者によるシングルシードアッセイに加えて，使用者による線源強

度検証を推奨している．本邦でもデッドシードの混入（放射線治療インシデント報告．ヨウ素 125 にお

けるインシデント事例．S01-2018-003）や線源強度の公称値から 9%異なる線源の納入（放射線治療イ

ンシデント報告．ヨウ素 125前立腺密封小線源治療に関わるインシデント事例の報告．S02-2017-002）

などのインシデントが報告された．海外では，「発注総数の少なくとも 10%を検証すること」が推奨さ

れているため，必要線源数に検証用線源数を加えた数を発注し，シングルシードアッセイにて検証して

いる施設が多いことが推察される．米国では，患者に挿入していない検証用線源も請求可能となってい

る．しかし，本邦では検証用線源の費用（保険点数）が認められていないことや法規制の観点から，シ

ングルシードアッセイ自体が困難である．そこで，シングルシードアッセイと比較した場合，滅菌状態

で測定できることから，代替法としてバッチアッセイが注目されている．紹介論文もバッチアッセイに

関する内容である．シングルはその名の通り，一つひとつ測定するのに対し，バッチとは束を意味して

おり，複数個を一塊として測定する手法であり，時間効率や検証者の被ばく低減の観点からも有効であ

る． 

本邦では，シード治療は多くの施設で施行されているが，線源検証は普及していない実情がある 1)．

今回，「紹介論文の手法が普及の一助となれば」という思いから本論文を選出した． 

 

【本論文で訴えたいこと】 

 バッチアッセイには二つの一般的な解決策が提案されている．一つは，インプラントに使用する線源

と同じロットの線源を余分に注文し，それを測定することである．もう一つの方法は，校正済み井戸形

電離箱式線量計 2)またはイメージングプレート 3)を使用して，滅菌包装の状態で線源強度を検証するこ

とだが，両手法には限界がある．余分に注文した線源は，特に連続線源の場合，インプラント内の線源

を代表するものとは言い切れない．井戸形電離箱式線量計またはイメージングプレートの使用により，

一度に評価する線源数が制限される．本研究の目的は，滅菌性，検証精度，再現性，時間効率を維持し

ながら，100%の I-125線源の線源強度を確認するための方法と器具を紹介することである．  

本研究では I-125線源(STM 1251; Bard Medical Division, Covington, GA, USA)を用いた．本線源の

販売形態は三つある．一つひとつの個別線源が滅菌容器に封入されているタイプ，連続線源として滅菌

容器に封入されているタイプ，予め線源が装填されたニードルタイプである． 

これらの線源を図 1に示すように，線源測定トレイ（トレイ）に配置し，トレイから 25 cmの距離を

保ち電離箱式線量計を配置した．電離箱式線量計を保持できるようなアルミニウムスタンドを自作した．

トレイ下には滅菌シートが配置されており，滅菌を維持した状態での測定を可能とした． 

世界の論文シリーズ 
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図 1の概要(原文の写真を元に筆者が作図) 

電離箱線量計が自作のアルミニウムスタンドにより，線源測定トレイから 25 cm 離れた位置に保持され

ている．トレイに各タイプの線源を配置することで測定する． 

 

著者の施設では術中計画法により行われているため，ニードルに線源を装填する前に，個別線源や連

続線源の線源強度を測定し，検証する必要がある．しかし，いくつかの施設では，術前計画法により行

われているため，術前計画に基づいて予め線源が装填されたニードルを発注する．このため，本手法の

有用性を評価するために，線源が装填されたニードルも同様に測定した(図 2)．つまり，本研究では，個

別線源・連続線源・線源が装填されたニードルの三つのタイプを測定対象とした． 

滅菌シートを配置し，その上にアルミニウムスタンドを置き，電離箱式線量計を装着する全工程にか

かる時間はわずか数分であった．線源強度測定は，1トレイあたり 20～30秒で施行可能であった．次の

インプラント治療の合間に測定を行った． 

 

＜個別線源と連続線源の測定結果＞ 

個別線源の平均正規化線量率は 0.589±0.012 mR/h・U，連続線源のデータは 0.589±0.019 mR/h・

U (表 3)，合計平均値は 0.589±0.017 mR/h・Uであった．すべての測定データは，平均正規化線量率の

5%以内に収まっていた(図 3)．AAPM TG-64 の勧告によると，製造者の公称放射能強度から 5%以上乖

離した場合，その原因について製造業者に報告しなければならない． 

 

＜線源が装填されたニードルの測定結果＞ 

個別線源と連続線源のデータ(表 4)の平均正規化線量率は 0.263 mR/h・U で，標準偏差は 0.014 であ

った．線源が挿入されたニードルでは，10 回の正規化線量率測定のうち，平均正規化線量率の 5%以内

に収まっていたのは 6回のみであった(図 4)． 

 

 本手法が優れているのは，「全体の 10%など一部の線源のみでなく，すべての線源を測定している」，

「滅菌を解かずに測定可能」「すべての線源を術前のわずかな時間で測定可能」「自作アルミニウムス

タンドも容易に工作可能であり，費用負担が少ない」点である．また，欠点とされている「線源が装填

されたニードルの測定値について，ニードル素材であるステンレスによる光子減衰の影響を受けるが，

トレイ－電離箱式線量計の距離を調整することにより改善可能」としている． 

 

【コメント】 

バッチアッセイとして，先行論文では井戸形電離箱式線量計 2)，イメージングプレート 3)を用いた手

法が報告されている．紹介論文では，推奨されているシングルシードアッセイでは，残りの 90%を検証

していないことを述べた上で，「バッチアッセイは，時間効率良くすべての線源を測定できる」「測定

精度に関して，デットシードといった致命的な線源を検出する上では問題無い」「線源が装填されたニ

ードルに関してもトレイ－電離箱式線量計の距離を調整することにより，対応可能」としている．また，

先行論文との違いとして，すべての線源を数分で測定可能であり，はるかに短時間である利点を強調し

ている．測定精度の根拠として表 4 から，電離箱式線量計測定値を線源個数と線源強度の積で除した正
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規化線量率が，標本全体の平均値（平均正規化線量率）から 5%以上の乖離が無いことが分かる．時間

効率の根拠として表 3 から，最大で連続線源 180 個を同時に測定しており，効率が良いことが分かる．

製造されたすべての線源は，製造業者によってシングルシードアッセイが行われ，「個々の線源が公称

値±6%以内の線源強度であることが一度は確認されていること」を考慮した場合，特に本邦の法規制を

踏まえると，バッチアッセイでデッドシードが検出できる紹介論文の手法は，臨床に於いて活用し易い

実用的手法と考える．ただし，バッチアッセイでは，複数個を一塊として測定するため，デッドシード

や検定日が大幅に異なる場合には対応できるが，個々の線源に関して，数%の乖離を検出する点に於い

ては，シングルシードアッセイに劣る．加えて，手術の合間に測定できることは時間効率の観点から優

れているが，仮にデッドシードが存在していた場合には，メーカーへ問い合わせ，ならびに原因を検証

する時間が確保できない欠点が挙げられる．今後，さらなる研究が行われ，諸問題を解決し得る手法が

開発されることを期待している． 

シード治療では，デッドシードや検定日違いの線源が挿入された場合，その影響は大きいため，線源

強度測定はシード治療における重要な検証業務のひとつである．本邦では，医療機器安全管理料 2 が改

訂され，要件を満たした施設に於いてシード治療で算定可能となった．具体的要件として，日本放射線

腫瘍学会公認ガイドライン「密封小線源治療における医療機器安全管理料 2 運用指針 2024」が公開さ

れ，線源の品質管理として線源個数確認ならびに線源強度計測が推奨された．これまで，線源検証が普

及しなかった理由として，「人員不足」「測定機器不足」が挙げられるが 1)，今回の改訂により，これ

らの問題を解決する後押しとなることを期待している． 

また，国際原子力機関の勧告を受け，放射線の量等の測定の信頼性確保について，2023 年 10 月 1 日

に放射性同位元素等の規制に関する法律が改正された．これにより，「放射線測定器については，点検

及び校正を 1 年毎に適切に組み合わせて行うこと」が求められた．法改正により，改正前と比較して，

定期的に校正された線量計を用いることが義務付けられたことにより，測定値の信頼性が高まったこと

も検証普及の追い風となったと考える．井戸形電離箱式線量計やイメージングプレートは高価であり，

保有していない施設もあるだろう．しかし，シード治療を行う施設では，患者の退出時線量率測定や管

理区域の漏洩線量測定のため，電離箱式線量計は必ず保有していると考えられる．そのため，電離箱式

線量計を用いたバッチアッセイは追加の測定機器購入の費用を要さず，時間効率も良く，一定以上の精

度で簡易的に検証可能であるため，本邦において普及し易い手法であると考える． 

放射線治療では，第一に正確な処方線量を把握することが必須となる．シード治療において線源強度

の乖離を検証することは，治療効果の判定に有効なだけでなく，有害事象の発現を考慮した線源留置に

もつながると考える．重要性が提唱されている検証を徹底し，医師と連携することにより患者に最良の

治療を提供することは，我々診療放射線技師の重要な責務である． 
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編集後記 

 

9 月も中旬を過ぎ，関東地方は一気に暑さが和らぎました．外出時に日傘の重要性を初めて感じた灼

熱の夏はどこへやら． 季節の変わり目は体調を崩しやすいため，みなさまもどうぞご自愛ください． 

さて，昨年の秋は第 1 回日本放射線医療技術学術大会（JCRTM）が沖縄で行われましたが，今年は

一気に日本の北に飛んで札幌での開催です．10 月中旬は予想以上に寒くなることもあると聞きしてお

ります．参加される方は防寒対策を講じたうえでぜひお越しください．今回も大会期間中に放射線治

療部会の情報交換会も開催いたします．参加される部会員のみなさまと盛大に語りあい，楽しい時間

をすごすことを楽しみにしています．  

今後も，読者の皆様にとって有益な情報をお届けできるよう努めてまいります．引き続き，ご支援

とご意見を賜りますようお願い申し上げます．(篠田) 

 

 

当部会誌に対するご要望・ご意見およびご感想は 

以下の URLまたは QRコード読み取りのうえ 

専用フォームからお寄せください． 

 

https://forms.gle/9UWteHa1nEJ9hP7P6 

 
 

 

 

 

 

令和 7年 10月 

公益社団法人 日本放射線技術学会 

放射線治療部会 部会長  佐々木 幹治 
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