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診療放射線技師の業務を支援する AI 研究 

              名城大学 情報工学部 情報工学科 寺本篤司                         

 

１．はじめに 

 近年，人工知能（AI）は第三次ブームを経て飛躍的に性能が向上し，社会のさまざまな分野で実用化が

進んでいる．医療の現場においても例外ではなく，患者のポジショニング支援や撮影画像の画質改善とい

った処理が撮影装置に組み込まれるようになり，臨床応用が進んでいる．また，病変の自動検出や診断支

援を目的としたコンピュータ支援診断（CAD）技術も，AI の進展とともに多様な臓器や疾患に対応したも

のが開発されている．さらに，近年注目を集める生成 AI の登場により，ChatGPT に代表されるような高

度で柔軟なデータ解析・文章生成技術が実現されつつある．これらの技術は，診療放射線技師の業務を支

援し，業務効率の改善や負担軽減に資する可能性が高い．本稿では，まず現状の AI 技術の動向を解説し

たうえで，診療放射線技師の業務支援を目指した AI 研究事例について紹介する． 

 

２．識別 AI と生成 AI 

 AI 技術は大きく識別 AI と生成 AI に分けることができる．識別 AI とは，多数のデータを基に入力情報

を解析し，最も適切な結論を導き出すものである．例えば，図 1(a)に示すように，胸部 X 線画像から正

常か異常かを判定するモデルや，CT 画像から肺結節の位置を検出するモデルなどがこれにあたる．識別

AI では，入力される情報量が多く，その中から特徴を抽出して比較的少ない情報に変換する点が特徴で

ある．すなわち，与えられた情報の圧縮が行われていると考えることもできる． 

 一方，生成 AI は逆の性質を持つ．少量の入力からであっても，目的に応じて多様な出力を生成するこ

とが可能である．例えば，図 1(b)に示すように「火星で馬に乗った宇宙飛行士の写真」という文章を入

力すると，その内容に基づいた画像を生成することができる．また，質問文を入力することで，数百字に

及ぶ自然な文章を出力することもできる．このように，少ない入力情報から多くの出力情報へ情報の拡張

が行われている．近年注目される ChatGPT や画像生成 AI モデルは，この生成 AI に属するものである． 

 

 

       (a) 識別 AI                               (b) 生成 AI 

図 1 識別 AI と生成 AI 

教育講演 



2 

 

3. 識別 AI と生成 AI で用いられている要素技術 

 次に，現在の AI 技術に利用されている要素技術について概観する．まず，人間の脳の仕組みを模倣し

た人工ニューラルネットワークを出発点とし，画像認識に強みを持つ畳み込みニューラルネットワーク，

文脈や依存関係を捉えるための Attention 機構，そしてこれを中核に開発された Transformer を取り上

げる．さらに，これらをベースとして発展した大規模言語モデル（LLM）やマルチモーダルな基盤モデル

へといたる流れを，順を追って簡潔に解説する． 

 

3.1 人工ニューラルネットワーク 

 人工ニューラルネットワーク（Artificial Neural Network, ANN）は，人間の脳に存在する神経細胞

（生体ニューロン）の働きを模した数学的モデルである．生体ニューロンは入力が一定の閾値を超えると

パルス信号を発生し，他のニューロンへと伝達する．人工ニューロン（図 2(a)）も同様に，多数の入力

に重みを掛け合わせ，バイアスを加えた値を活性化関数に通して出力を得る． 

 この人工ニューロンを多数組み合わせ，入力層・中間層（隠れ層）・出力層という階層構造を持たせた

ものが人工ニューラルネットワークである（同図(b)）．中間層を多層にすることで表現力が高まり，複

雑なデータ構造やパターンを学習できるようになる．これが多層の中間層を有する人工ニューラルネッ

トワークを用いる技術をディープラーニングと呼んでおり，画像や音声の処理に広く利用されている． 

 

        

                       (a) 人工ニューロン      (b)階層型人工ニューラルネットワーク 

図 2 人工ニューラルネットワーク 

 

3.2 畳み込みニューラルネットワーク 

 畳み込みニューラルネットワーク（Convolutional Neural Network, CNN）は，画像認識に特化した人

工ニューラルネットワークの一種である．我々の視覚の働きを模倣する形で設計されており，画像分類，

物体検出，領域抽出，さらには画像生成まで幅広い応用が可能である．CNN の特徴は，図 3 に示すように

画像の特徴を抽出する畳み込み層と，データを圧縮して位置や形の変化による影響を緩和するプーリン

グ層を組み合わせることで，非常に少ないパラメータでデータ量の多い画像データの認識が可能になる

点である． 
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図 3 畳み込みニューラルネットワーク 

 

3.3 Attention 機構と Transformer 

 Attention 機構は，入力データの中からどこに注目すべきかを学習的に決定する仕組みである．例えば

文章処理では，図 4 に示したように，どの単語同士の関係が重要かを把握して特徴を取り出すことができ

る．この注意を向ける仕組みによって，長い文脈や複雑な依存関係を効率的に捉えられるようになった．

数式的には，入力ベクトル同士の類似度を計算して重み（Attention weight）を求め，その重みをかけ合

わせて特徴を取り出す．これにより，従来の技術では扱いにくかった，位置的に離れた場所同士の依存関

係をうまく表現できる点が大きな特徴である． 

 Google によって開発された Transformer は，この Attention 機構を導入したニューラルネットワーク

モデルである．従来，文章や時系列データのように多くのデータが連なっているものに対しては，順番に

処理する構造を用いていたが，Transformer では全ての入力を同時に処理しながら Attention によって重

要な箇所や依存関係を把握できるようになった．これにより学習の並列化が進み，膨大なデータセットを

用いた場合でも高い性能が得られる．後述する自然言語処理モデルは，Transformer を主に利用している． 

 

図 4 Attention 機構による単語同士の関係性の解析 

 

3.4 Vision Transformer 

 Vision Transformer（ViT）は，画像認識に Transformer の仕組みを応用したモデルである．従来の CNN

が小さな領域ごとに特徴を抽出するのに対し，ViT では図 5 に示すように画像をパッチ（部分画像）に分

割して入力し，パッチを１つの単語のように扱う．それらを前節の Transformer に与え，それぞれのパッ

チ同士の関係を解析できる．これにより，画像の広い範囲にまたがる特徴を効率よく捉えることができ，

大規模データで学習すると CNN に匹敵する性能を発揮することが報告されている． 
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図 5 Vision Transformer 

 

3.5 自然言語処理モデル，LLM，基盤モデル 

 自然言語処理（Natural Language Processing, NLP）は，日本語や英語などの自然言語をコンピュータ

で扱うための技術であり，文章の分類，翻訳，要約，質問応答など多様な応用がある．初期には統計的手

法やルールベースの手法が用いられていたが，近年はニューラルネットワーク，特に Transformer を用い

たモデルが主流となっている． 

 大規模言語モデル（Large Language Model, LLM）は，膨大なテキストデータを学習し，人間に近い自

然な文章を生成・理解できるようになった人工知能モデルである．ここで，大規模（Large）と呼ばれる

理由は，学習に使われるデータ量が膨大であること，そしてモデルを構成するパラメータ数が数億〜数千

億規模に達することからである．GPT(Generative Pretrained Transformer)や BERT(Bidirectional 

Encoder Representations from Transformers)などが代表例として挙げられる． 

 さらに近年は，LLM を含む基盤モデル（Foundation Model）が注目されている．これは言語に限らず，

画像や音声など多様なデータを扱えるように学習され，医療，教育，産業など多様な分野に応用可能であ

る．基盤モデルは一度大規模学習を行えば，少量のデータを用いたファインチューニングによってさまざ

まなタスクに適応できる点が特徴であり，最近の AI 研究の中心的存在となっている． 

 

4. 視覚言語モデル：Image-to-Text と Text-to-Image 

 近年，画像と自然言語を統合的に扱う視覚言語モデル（Vision-Language Model）が大きな注目を集め

ている．これは画像認識の発展形ともいえる技術であり，画像から説明文を自動生成する Image-to-Text

や，文章の記述をもとに画像を生成する Text-to-Image といった処理が含まれる．これらの技術は，人

間の視覚的理解と言葉の表現を結びつけるものであり，放射線技術領域においても AI 研究のメイントピ

ックスになると予想される．ここでは，Image-to-Text と Text-to-Image に関する技術を概説する． 
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4.1 Image-to-Text 

 Image-to-Text は画像キャプショニングとも呼ばれ，入力された画像を解析して，その内容を自然言語

による説明文として出力する技術である．画像内の対象や場面を理解し，それを人間にとって分かりやす

い文章として提示できる点が特徴である．これにより，画像の自動的な記述，整理，検索などに利用する

ことができる． 

 図 6 に処理の流れを示す．画像キャプショニングを行うには，まず入力画像から物体や特徴を的確に抽

出する必要がある．そのため，最初の段階では画像を数値的な特徴量に変換し，情報を言語化するときの

素材にする．この特徴抽出には，前章で扱った畳み込みニューラルネットワークや，Vision Transformer

などが利用される． 

 次に，得られた特徴量を自然言語モデルへ入力し，それに基づいて説明文（キャプション）を生成する．

自然言語モデルとしては Transformer や GPT 系のモデルが広く用いられる．さらに，この技術を学習さ

せるには，画像とそれに対応する正解キャプションを多数用意し，モデルが両者の対応関係を学習するこ

とで，生成される文章の品質が向上していく． 

 筆者の研究室では様々なモダリティに関する Image-to-Text 処理を検討しており，応用例の一つとし

て CT 画像の画像所見生成[1]や細胞診画像の所見生成[2]などがある． 

 

 

図 6 Image-to-Text モデル 

 

4.2 Text-to-Image 

 Text-to-Image は，与えられたテキストの記述に基づいて新しい画像を生成する技術である．例えば「窓

辺に座る猫」と入力すると，その内容に沿った画像を自動的に作り出すことができる．近年，この分野で

主流となっているのが 拡散モデル（Diffusion Model） である． 

 拡散モデルは，物理現象の熱拡散から着想を得た画像生成のための AI モデルである．例えば透明な水

にインクを落とすと，時間の経過とともに色素が広がり，やがて均一に溶け込んでいく．このような現象

は拡散過程と呼ばれ，拡散モデルはその逆の操作（逆拡散過程）を学習する仕組みである．具体的には，

きれいな画像にノイズを少しずつ加えて完全にランダムな画像に変換するのが拡散過程，逆にノイズか

ら徐々に意味のある画像を復元するのが逆拡散過程である．学習が完了すると，モデルはランダムなノイ

ズから高品質な画像を生成できるようになるため，現在広く使われている画像生成 AI の多くがこの原理

を利用している． 
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図 7 拡散モデル 

 

 拡散モデルを利用した画像生成は，単にノイズから画像を復元するだけでなく，条件付け（コンディシ

ョニング）によって指定した内容を生成画像に反映させることができる．例えば「猫」や「建物」といっ

た条件を数値化し，逆拡散過程の際に与える（埋め込む）と，その意味に沿った画像が得られる．この仕

組みを自然言語処理と組み合わせたものが Text-to-Image である．入力した文章は数値ベクトルに変換

され，拡散モデルの逆拡散過程に条件として組み込まれる．その結果，ノイズから画像を復元する途中で

テキストの意味が反映され，「窓辺に座る猫」といった指示文に対応する画像を生成することができる． 

 この技術を用いた筆者らの研究事例として，画像所見からの CT 画像の生成[3]や細胞診の画像所見に

基づく画像生成[4]などがある． 

 

 

図 8 拡散モデルによる Text-to-Image 

 

５．撮影業務を支援する AI 技術 

 前章では，画像認識や画像生成に関する要素技術を取り上げた．これらの技術は診断支援にとどまら

ず，撮影現場で利用可能な技術にも利用されている．本章では，診療放射線技師の撮影業務を直接的に支

援しうる AI 技術に注目する．具体的には，撮影画像の品質を向上させる画質改善，得られた画像の画質

評価，そして撮影時に最適な条件やポジショニングを評価する撮影支援の 3 つに分けて，我々の取り組み

を中心に紹介する．なお，各技術の詳細は，発行された論文（参考文献に記載）を確認いただきたい． 
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5.1 画質改善 

・MR 画像のノイズ低減 

 最初の事例として，MR 画像の画質改善に関する研究を紹介する．この研究は筆者が学生時代に取り組

んだものであり，MR 画像に含まれるノイズを低減することを目的としている[5]．手法としては，画像処

理特性を変化させて学習させた複数の人工ニューラルネットワークを用意し，それぞれの出力を局所領

域ごとに選択して組み合わせることで，最終的な画像を生成する． 

 処理後の画像は，当時一般的であった非線形フィルタによるノイズ低減と比較しても良好な結果が得

られた．約 30 年前に実施した研究ではあるが，複数のニューラルネットワークを並列に構成し，局所的

に適用するという考え方は，後に登場する CNN の発想に一部通じるところがあるため紹介した． 

 

 

(a)ネットワーク構造 

 

(b)処理結果 

図 9 MR 画像の画質改善 

 

・乳房専用 PET 画像のノイズ低減 

 次の事例は，乳房専用 PET 装置 Elmammo（島津製作所）で撮影した画像の画質改善である．この装置は

乳房を小型のリング状検出器に挿入して撮影するが，検出器の配置の影響により胸壁近傍でノイズレベ

ルが高くなる特性を持つ．撮影時間を延長すればノイズは低減できるが，患者負担の増加や体動によるブ

レの影響が問題となる． 

 そこで，検出器の位置に応じてノイズ低減を最適化するため，複数の CNN を組み合わせた画質改善手法

を開発した[6,7]．具体的には，検出器の端面側・中央側など領域ごとに異なる CNN を学習させ，それぞ

れの特性に応じた処理を行うようにした．学習には，1 分間撮影画像を入力，7 分間撮影画像を教師デー

タとして用い，2 次元 CNN[6]および 3 次元 CNN[7]によるノイズ低減フィルタを作成した． 
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 評価の結果，本手法は線形・非線形フィルタを用いた処理よりも良好な画質を示し，さらに単一の CNN

で画像全体を学習させる方法よりも良好であった．これらの結果より，短時間撮影であっても診断に耐え

うる画質が得られる可能性が示された． 

 

・胸部 X 線画像の骨抑制処理 

 最後に紹介するのは，ノイズ低減ではないが，胸部 X 線画像の読影の際に構造的なノイズとなる骨成分

の抑制に関する研究である．胸部 X 線画像においては，肋骨や鎖骨といった骨構造が肺野に重なり，小さ

な異常影が見落とされる要因となる．従来の解決策としてエネルギーサブトラクション撮影があるもの

の，被ばく線量の増加や専用装置の必要性，心拍や呼吸によるアーチファクトといった問題がある．そこ

で，通常の胸部 X 線画像を対象とした，CNN による骨抑制手法を開発した[8]． 

 提案手法では，入力画像の各画素周辺の情報を CNN に与え，そこから骨成分を推定して取り出す．その

結果得られる骨成分画像を原画像から差し引くことで，骨の影響を抑えた胸部 X 線画像を生成する．学習

には CT 画像から生成した擬似 X 線像[9]と，骨成分を除去した画像を教師データとして用いた．評価の

結果，骨抑制率は約 89%となり，病変の描出能についても大きな影響がないことを確認した． 

 

5.2 画質評価 

 CT 画像の画質評価では，低コントラスト分解能の評価が重要だが，従来用いられてきたノイズや CNR

といった統計的な指標は，逐次近似再構成やディープラーニング再構成による画質変化を十分に反映で

きない．そのため画像の主観的評価が不可欠とされてきたが，評価者の負担が大きい点が課題であった． 

 そこで本研究では，ファントムを撮影した CT 画像に対する複数の観察者の評価スコアを教師データと

して，CNN により主観評価を自動推定する手法を開発した[10]．結果，観察者評価と高い相関を示し，異

なる再構成法や装置間でも良好な性能が得られていることを確認した．これにより，人手に依存してきた

画質評価を均質化できる可能性が示された． 

 

5.3 撮影支援 

・人工膝関節 X 線撮影像の再撮影判定 

 人工膝関節置換術後の経過観察では，X 線画像によるインプラントの位置や骨の変化の評価が重要であ

る．しかし患者ごとの体格差や技師の技量により，1 回の撮影で関節面を適切に描出するのは難しく，不

必要な再撮影が生じることがある．また，撮影者の判断にばらつきが生じることも課題であった． 

 本研究では，人工膝関節 X 線画像の整位の合否を自動判定するシステムを構築した[11]．CNN を用いて

ファントム画像と 461 例の臨床画像を解析し，複数のモデルを比較した結果，VGG16 を用いたときに最も

高い精度が得られ，正面像で約 81%，側面像で約 87%の識別精度を示した．また，Grad-CAM により CNN が

関節面に着目して判定していることが可視化された．この手法は，人工膝関節の整位判定を自動化するこ

とで，再撮影の判断のばらつきを減らし，その結果，患者負担や被ばくの低減につながる可能性がある． 
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・胸部 X 線画像の再撮影判定 

 胸部 X 線撮影では，最大吸気時に撮影することが求められる．しかし吸気が不十分な場合，撮影が必要

になることがある．その判定は撮影者の経験に依存しており，ばらつきが問題となっていた． 

 本研究では，CNN を用いた再撮影判定システムを開発した．動態 X 線画像群から吸気率を定量化し，そ

れを教師データとして CNNを学習させることで，再撮影が必要か否かを判定できる手法を開発した[12]．

検証の結果，VGG16 をベースとしたモデルで実際の胸部 X 線画像において 82.3%の正解率が得られ，再撮

影判定を自動化できる可能性が示された． 

 

・造影 CT 検査における関心領域設定の支援技術 

 頭頸部の 3D-CTA 検査では，造影剤の到達を監視するために頸部血管上に ROI（関心領域）を設置する．

しかし，造影前の単純 CT 画像では血管と周囲組織の識別が難しく，経験の浅い技師にとって ROI の正確

な設定は容易ではない． 

 本研究では，Cycle-GANを用いて非造影 CT 画像から疑似造影 CT 画像を生成し，ROI 設定を支援する技

術を開発した[13]．単純 CT と造影 CT のペアデータを学習に用い，生成した疑似造影画像を用いて血管

の描出能や ROI 設定精度を評価した．その結果，疑似造影画像では血管が明瞭に描出され，技師による

ROI 設定の正解率が向上することが確認された．この手法は，救急医療や夜間当直など経験豊富な技師が

不在の場合でも，適切な撮影タイミングの確保を支援できる可能性があり，臨床現場での有用性が期待さ

れる． 

 

６．まとめ 

本稿では，近年発展の著しい AI 技術について概説するとともに，それらを診療放射線技師の撮影業務

支援に応用した研究事例を紹介した．AI のトレンドは，従来の識別 AI から生成 AI へと移り変わり，演

算の規模も大きくなってきているが，創意工夫によって限られた環境でも研究を進めることは十分に可

能である．研究は必ずしも大規模な企業や研究所だけで行うものではなく，大学や病院でも実施可能なテ

ーマは多くある． 

一方で，一定水準のハードウェア環境やソフトウェア開発に関する技術は AI 研究において不可欠であ

り，個人や小規模研究グループだけでは限界もある．今後は，学会や専門部会，委員会が積極的に支援を

行い，研究者や臨床現場の技師が積極的に AI 技術の開発・応用に取り組める体制づくりが望まれる． 
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業務効率の向上を目指した放射線技術支援システム 

の検討 

日本文理大学 衞藤 路弘 

 

1. はじめに 

近年，放射線技術分野においては，被ばく線量の最適化や撮影の再現性確保といった課題に対応するた

め放射線技術の向上が求められている 1)．特に一般 X 線撮影検査では，正確なポジショニングの実施，適

切な撮影条件の設定，撮影時の被験者の動きに対する制御が，撮影精度と安全性を左右する重要な要素で

ある．これらは診療放射線技師の技能に大きく依存しており，客観的かつ自動化された形で支援する技術

の導入は，臨床現場や教育における多くの課題解決につながると考えられる． 

臨床現場においては，術者の経験に依存した撮影条件設定が，被験者ごとのばらつきを生み，再撮影や

過剰被ばくの一因となることがある 2,3)．また，高齢者や小児など体格差の大きい患者においては，撮影

条件の適正化が難しく，熟練技師でも判断を要する場面が多い．こうした課題を解決するためには，撮影

部位や体厚を自動的に計測し，適切な条件を即座に提示できるシステムの導入が望まれる 4,5）． 

また，撮影時の体動や呼吸運動は，画像のブレやアーチファクトを引き起こし，再撮影の要因となる．

被ばくの低減と業務効率化を実現するためには，撮影時に体動の有無を的確に把握し，適切なタイミング

で撮影を行う支援技術の開発も不可欠である．従来は術者の目視や口頭指示により体動を制御していた

が，これには限界があり，客観的な動体検出技術の導入が期待されている． 

教育面においては，2022 年の「診療放射線技師養成所指導ガイドライン」6）の改定により，臨床参加

型実習が推奨され，学生が実践的な技能や態度を習得することが強く求められるようになった 7,8)．しか

し，学内で行われる実技実習においては法律上，人体への X 線照射が禁止されており，ファントムを用

いた演習や学生同士の模擬訓練が主流となっている．このような制約の中で，より臨床に近い状況を再現

し，ポジショニング技能の客観的評価が可能な教育支援システムの整備が求められている． 

以上の背景を踏まえ，本研究では，診療放射線技師の業務効率向上に寄与する放射線技術支援システム

の構築を目的とし，その有用性の検討を行った． 

 

2. 方法 

本研究では， 「撮影部位推定・自動撮影条件設定機能」， 「体動検出・撮影タイミング支援機能」，ならび

に「ポジショニング評価機能」を備えたシステムを構築し，各機能について模擬環境下での検証を行い，

その有効性を評価した．これらの機能はいずれも単独で有用であるが，将来的にはこれらを統合すること

で，より包括的な撮影支援システムへの発展を目指している．以下に，本研究における方法を詳述する． 

 

2-1 撮影部位推定・自動撮影条件設定機能 

本研究では，一般 X 線撮影検査における撮影条件の最適化を目的とし，深度カメラと姿勢推定手法を

画像部会 
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組み合わせた自動撮影条件設定システムを構築した 9)．体厚の取得には，深度カメラである Intel 社製 

RealSense LiDAR L515（以下，L515）を使用し，撮影部位の推定に必要な画像取得には，L515 および

RGB カメラの SANWA SUPPLY 社製 CMS-V43 （以下，CMS-V43）を用いて精度検証を行った （Fig. 1）．

撮影部位の推定には，深層学習ライブラリである OpenPose （body_25 モデル）による姿勢推定手法を用

いた．本法では，OpenPose で検出された関節点に加えて，新たに 12 箇所の基準点を設定することで，

胸部や腹部を含む幅広い撮影部位の推定を可能とした．体厚の計測には，L515 による深度データを用い，

カメラから被験者までの距離を算出した．この距離情報に基づき体厚を推定し，その値に応じた最適な X

線撮影条件を自動的に表示する仕組みとした．システムの評価は，被験者 10 名を対象とした 14 部位・

26 体位における姿勢推定精度の評価により実施した．撮影は，撮影距離 100 cm および 120 cm，カメラ

画角は L515 が 70°，CMS-V43 が 150°の条件下で行い，推定精度を 4 段階で評価した．関節検出精度

が低かった部位に対しては，動画解析（10 フレーム平均）を適用することで精度の向上を図った．撮影

条件は，推定された部位および体厚に基づいて自動表示され，各部位における体厚の計測誤差および認識

精度について検証を行った． 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-2 体動検出・撮影タイミング支援機能 

本研究では，一般 X 線撮影検査における再撮影率の低減を目的として，撮影時の体動や呼吸運動によ

る被験者の動きを検出するシステムを構築した 10)．RGB カメラの SANWA SUPPLY 社製 CMS-V64（以

下，CMS-V64）を用いて，撮影前から被験者の姿勢を常時モニタリングし，取得した動画に対して画像

処理を施すことで動体検出を行った．画像解析手法としては，フレーム間差分法およびオプティカルフロ

ー法を用いた （Fig. 2）．フレーム間差分法では，動きにより生じる白画素数の変化を基に動きを数値化し，

オプティカルフロー法では特徴点の移動量および方向に基づいて動きを解析した．実験では，人体ファン

トムを傾斜台上で移動させて動作を再現し，撮影距離，撮影角度，動作距離を変更しながら検出精度の評

価を行った．さらに，成人被験者 3 名に呼吸動作を実施してもらい，呼吸による微細な動きの検出も検証

した．撮影フレームレートは 60 fps，30 fps，15 fps の 3 条件で比較し，それぞれの条件における検出精

Fig. 1 システム構成図 
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度の変化を解析した．検出結果は，グラフや色による視覚的表示としてリアルタイムでモニター出力され，

医療従事者が被験者の動作状況を直感的に把握できるよう設計されている． 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-3 ポジショニング評価機能 

本研究では，頭部 X 線撮影検査の実践的トレーニングの効果向上を目的に，姿勢推定手法を用いたシ

ミュレータシステムを構築した 11)．システムは，X 線撮影検査の実環境に設置した 2 台のカメラ（正面：

L515，側面：CMS-V64）を用いて模擬患者のポジショニング画像を撮影し，画像から正中矢状面（Median 

sagittal plane: MS），体軸断面（Axial plane: AX），眼窩耳孔線（Orbitomeatal base line: OM）の 3 軸の傾

斜角度を推定する （Fig. 3）．MS と AX の取得には MediaPipe の Face Mesh を，OM の取得には OpenPose

（body_25 モデル）を使用した．これらの角度に基づき，事前に用意された X 線画像の中から最も近い

条件の画像を選択・表示し，ポジショニングの精度を視覚的に評価できるようにした．手法の検証は，三

次元モデルを用いた予備実験と，実際の模擬患者による本実験で行い，角度の変化に応じた測定精度を評

価した．実験では，各軸を±13°まで段階的に変化させ，合計 660 枚の画像を用いて評価を行った．ポ

ジショニング精度は，推定誤差に基づき 4 段階で評価し，3 軸のすべてが±3°以内だった場合を 

3≪good≫とし，3≪good≫の基準は満たしていないが，3 軸の測定誤差の平均が 5°未満の場合を

2≪poor≫とした．また，3 軸の測定誤差の平均が 5°を超えるか，あるいは 5°未満であっても 3 軸のい

ずれかが 8°を超えた場合を 1≪bad≫とし，本システムで検出ができなかった場合を 0≪ND≫とした． 

 

 

 

 

 

 

Fig. 2 画像入力から解析までの流れ 
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３．結果 

撮影部位推定・自動撮影条件設定機能による結果を Table 1 に示す．撮影部位の推定に関しては，L515

（画角 70°）ではキーポイントの検出精度が低く，特に四肢では認識困難な体位もあった．一方，CMS-

V43（画角 150°）では撮影距離 120 cm 時に多数のキーポイントを正確に検出し，高い認識精度を示し

た．静止画像で検出精度の低かった部位については，動画を用いた解析により精度向上が確認された．撮

影部位推定に要する時間は 2.31～2.67 秒であり，実用上支障のない速度であった．X 線撮影条件の適正

化では，ほとんどの部位で体厚誤差が±10 mm 以内に収まり，推定された厚みに応じた条件が正確に提

示された．特に腹部では，測定値に最も近い厚みに対応した条件が適切に選択されていた． 

体動検出・撮影タイミング支援機能による体動検出の結果を Table 2 に示す．フレーム間差分法による

体動検出では，フレームレートが高いほどカウントされる画素数が少なくなる傾向があった．特に傾斜角

が 10°の場合，5°よりも多くの画素が検出され，動き距離に比例してカウント数も増加した．一方，オ

プティカルフロー法では，動き距離が大きいほど特徴点の移動も増加したが，フレームレートの影響は小

さく，傾斜角 10°のほうが 5°よりも移動量が大きかった．Fig. 4 に示すフレーム間差分法による呼吸検

出では，吸気と呼気の各タイミングで一時的な動きが検出され，低フレームレートほど検出画素数が多か

った．オプティカルフロー法でも吸気と呼気に対応する特徴点の移動が確認され，カメラ距離が近いほど

移動量が大きかった．いずれもフレームレートの違いによる影響は限定的であった． 

ポジショニング評価機能による撮影実験では，模擬患者による 3 軸（MS, AX, OM）の傾き検出結果を

22 通りの姿勢で評価した （Table 3）．正しくポジショニングされた No.1 の誤差は MS 0.9°，AX 0.8°，

OM 1.5°で最小だったが，No.2–8，No.9–15，No.16–22 にかけて誤差は段階的に増加し，最大で MS 

19.3°，AX 13.6°，OM 14.9°に達した．標準偏差も同様に増加傾向を示した．傾きの方向別にみると，

MS と OM でマイナス側に大きな誤差がみられた．4 段階評価では，No.1 は全て 3≪good≫，No.2–4 で

は 18.9％が 3≪good≫で残りは 2≪poor≫，No.5–8 では 95.0％が 2≪poor≫，No.9–15 と No.16–22 で

は 95.0％が 1≪bad≫と判定された（Table 4）．  

Fig. 3 システム構成図 
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Table 1 体厚計測と撮影部位推定の結果 
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Table 2 体動検出結果 

フレーム間差分法：(a) (b) (c) (d)，オプティカルフロー法：(e) (f) (g) (h) 
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Fig. 4 呼吸検出結果 

フレーム間差分法：(a) (b) (c) ，オプティカルフロー法：(d) (e) (f)  
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(a)

MS AX OM MS AX OM MS AX OM MS AX OM

± 30 0.9 0.8 1.5 0.0 0.1 0.0 2.3 2.2 2.9 0.6 0.6 0.9

± 1.6 1.0 1.9 0.0 0.0 0.0 5.0 9.0 6.9 1.2 0.9 1.4

± 2.9 2.0 4.0 0.0 0.0 0.0 8.5 8.8 13.8 2.0 1.8 3.1

± 4.8 3.9 6.0 0.0 0.0 0.1 19.3 13.6 14.9 3.9 3.4 3.4

± 3.0 2.2 3.8 0.0 0.0 0.0 19.3 13.6 14.9 2.1 1.6 2.4

(b)

MS AX OM MS AX OM MS AX OM MS AX OM

＋ 660 2.0 2.5 2.9 0.3 0.5 0.3 4.9 5.6 5.8 1.3 1.6 1.7

－ 660 4.1 1.9 4.7 1.3 0.3 1.4 7.7 4.3 8.2 2.1 1.4 2.1

全データ

No. 向き ｎ
最小 (°) 最大 (°) 標準偏差

1

2－8 210

平均(°)

9－15 210

16－22 210

1－22 660

No. 向き ｎ
平均(°)

全データ（方向別）

標準偏差

1－22

1－22

最小 (°) 最大 (°)

Table 3 模擬患者による 3 軸（MS, AX, OM）の傾き検出結果 

 

各軸の角度 (°) 
向き n 基準 

評価 一致率 

(%) No. MS AX OM 3 2 1 0 

1 0 0 0 ± 30 3 30 0 0 0 100.0 

2 3 0 0 ± 30 2 1 29 0 0 96.7 

3 0 3 0 ± 30 2 11 19 0 0 63.3 

4 0 0 3 ± 30 2 5 25 0 0 83.3 

5 3 3 0 ± 30 2 0 30 0 0 100.0 

6 0 3 3 ± 30 2 1 29 0 0 96.7 

7 3 0 3 ± 30 2 0 29 1 0 96.7 

8 3 3 3 ± 30 2 0 26 4 0 86.7 

9 8 0 3 ± 30 1 0 0 30 0 100.0 

10 3 8 3 ± 30 1 0 1 29 0 96.7 

11 3 0 8 ± 30 1 0 3 27 0 90.0 

12 8 8 3 ± 30 1 0 0 30 0 100.0 

13 3 8 8 ± 30 1 0 0 30 0 100.0 

14 8 0 8 ± 30 1 0 0 30 0 100.0 

15 8 8 8 ± 30 1 0 0 30 0 100.0 

16 13 0 8 ± 30 1 0 0 30 0 100.0 

17 8 13 8 ± 30 1 0 0 30 0 100.0 

18 8 0 13 ± 30 1 0 0 30 0 100.0 

19 13 13 8 ± 30 1 0 0 30 0 100.0 

20 8 13 13 ± 30 1 0 0 30 0 100.0 

21 13 0 13 ± 30 1 0 0 30 0 100.0 

22 13 13 13 ± 30 1 0 0 30 0 100.0 

Table 4 ポジショニング評価の結果 
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4. 考察 

本研究では，一般 X 線撮影検査の臨床応用および教育活用を目的として，3 つの異なる技術アプローチ

を開発した．いずれも，被験者の姿勢・体厚・動作を非侵襲的かつリアルタイムに評価可能とする点で，

臨床的・教育的意義は大きい． 

まず，撮影部位推定・自動撮影条件設定機能においては，LiDAR による体厚の測定精度は±5 mm 以内

であり，撮影条件設定への影響は軽微であることから，厚み計測手法として有効と評価できる．一方，

Cervical Spine では体と受像面の間に空間が生じること，Upper Arm では検査着が被験者に密着していな

いことが主な誤差要因であった．これらに対しては，空間の想定値を厚み指標に加味する，あるいは密着

性の高い検査着の使用や露出による対応が必要である．腹部撮影では，被験者と受像面が密着する条件下

で，実測値に近い厚みが得られ，適正な X 線撮影条件の提示が可能であった．撮影部位の推定について

は，広角レンズ（150°）を備えた CMS-V43 で精度が高く，全身がフレームに収まることで OpenPose

の関節認識性能が向上することが確認された．ただし，OpenPose は視野が狭い場合やオクルージョンの

影響を受けやすく，キーポイントの検出精度が低下する傾向がある 12）．関節の重なりや衣服による遮蔽

が誤認識の主因であり，今後はカメラ配置や画像解析手法の最適化が重要な課題となる． 

次に，体動検出・撮影タイミング支援機能として，フレーム間差分法とオプティカルフロー法により，

X 線撮影時の体動および呼吸運動の検出を試みた．フレーム間差分法では，白画素数が体動速度やフレー

ムレートに依存して変化し，30fps がノイズ抑制とリアルタイム性の両立から最適と判断された．一方，

オプティカルフロー法ではフレームレートの影響は小さく，15fps がデータ処理量の点で有効とされた．

呼吸運動の検出には同法が有効であり，肩部境界への特徴点設定が重要である．両手法ともに，カメラ距

離 100cm の条件で高い検出精度が得られた．体動の性質や検出対象に応じて両手法を使い分けることが

有効である．本システムは，撮影時に医療従事者が離れていても患者の体動をリアルタイムで検出・可視

化できるため，再撮影の防止や画質の向上に貢献し，X 線撮影の安全性と効率性の向上が期待される． 

最後に，ポジショニング評価機能が教育現場における客観的評価ツールとして有用である理由として，

従来のファントムや VR とは異なり，MS ・AX ・OM の 3 軸における姿勢誤差を定量的に評価できる点に

加え，模擬患者を用いることでコミュニケーション能力の向上も図れる点が挙げられる 13）．評価結果で

は，多くの誤差が±3°以内に収まり，教育用途での実用性が高いと考えられる．一方で，OM 軸の測定

精度が他の軸に比べてやや劣ることや，顔の左右非対称性や照明による陰影が誤認識を招くこと，傾斜角

が大きくなるほど精度が低下する傾向が課題として挙げられる．これらの改善に向けては，AI モデルの

学習データの拡充や複数視点からの補正技術の導入が今後の改良点となる． 

以上の 3 機能は，X 線撮影における“質”を支える基盤技術であり，被ばくの低減，安全性の向上，教育

の効率化，臨床業務の標準化に大きく貢献しうる．今後はこれらの機能を統合し，自動撮影条件設定・最

適タイミング制御・ポジショニング評価が連携する撮影支援システムの構築を目指す．その実現には，AI

との連携，ユーザーインターフェースの最適化，臨床現場への実装可能性の確保が不可欠である．本技術

は診療放射線技師の専門性を補完し，高度で安全な医療を支えるためのインフラとして，今後さらなる発

展が期待される． 
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5. 結語 

本研究では，X 線撮影検査における臨床的および教育的課題に対し，姿勢推定技術，深度カメラ，動体

検出技術を応用した 3 種の支援システムを提案・検証した．「撮影部位推定・自動撮影条件設定機能」の

研究では，撮影部位の自動推定および体厚計測に基づき，被験者ごとに最適な撮影条件を提示するシステ

ムを構築し，撮影精度の向上と業務効率化への貢献が確認された． 「体動検出・撮影タイミング支援機能」

の研究では，体動および呼吸運動をリアルタイムに検出することで，再撮影率の低減，線量の削減，業務

負担の軽減に資する技術的有効性を示した．「ポジショニング評価機能」の研究では，3 軸角度の推定に

よりポジショニング精度を客観的に評価可能なシミュレータを開発し，教育現場への応用の有用性が示

唆された．これら 3 つのシステムは，それぞれ独立して有用であると同時に，機能統合によって，より高

度かつ包括的な X 線撮影支援環境の構築が可能である．今後の実用化と普及により，撮影精度と安全性

を両立させた質の高い放射線医療の実現が期待される． 
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胸部Ｘ線画像の吸気率に着目した再撮影要否判定の試み 

〜胸部動態 X 線画像を用いた検証〜 

信州大学医学部附属病院 放射線部 松原 尚輝 

1．はじめに 

胸部 X 線撮影では患者に最大吸気を促し、撮影者がタイミングをとって撮影を行う。読影の際には、肺

容積、肺透過性、肺血管影等を注視することが多い［1］。これらの要素は深吸気で撮影されたことが前

提で読影されるため吸気不足の画像では誤った診断となる可能性がある。したがって深吸気での撮影は

重要であり、深吸気で撮影がされなかった場合には再撮影が必要となる。再撮影を行うか否かは診療放射

線技師が撮影直後に判断することが多いが、技師間でその判断にバラつきがあると考えられる。そこで

我々はコンピュータを用いて自動判定を行い、判定結果を撮影者に第二の意見として提示することで、判

断のバラつきを抑制できないかと考えた。自動判定を単純な画像処理等で行う場合、患者の体格や呼吸器

疾患などにより横隔膜の位置や画像内に占める肺野の領域が大きく異なるため正しく判定されないと考

えられる。そこで人工知能の一種である Convolutional Neural Network(CNN)によりこの問題を解決でき

ないかと考えた。CNN は医療分野でも様々な応用例があり、膝関節単純 X 線検査における再撮影支援シス

テムの報告では診療放射線技師の業務効率の向上が示唆されている［2］。 

そこで本研究では CNN を用いて胸部 X 線画像の吸気率に着目した再撮影の要否の自動判定システムを

開発することを目的とする。 

図 1．提案手法の概要 

 

2．手法 

CNN を用いて再撮影の要否を判定するためには、入力データとそれに対応した正解ラベルによる学習が

必要である。本研究では入力データが胸部 X 線画像、正解ラベルが再撮影の要否である。しかし、通常の

胸部Ｘ線画像では吸気が十分で再撮影が不要であったのか、不十分で再撮影が必要であったのか不明で

ある。そこで胸部動態Ｘ線画像[3]から学習データを生成し、CNN の学習に用いることとした。 

胸部動態 X 線画像の撮影時には、自動音声に従い「深吸気→深呼気→深吸気」を順に行う患者を 1 秒あ

たり 15 フレームで撮影し、1 回の検査で 300 枚の画像が取得される。取得画像を専用のワークテーショ

画像部会 
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ンに入力することで肺野の上下端が自動検出され、その距離データがフレーム毎に出力される。本研究で

は図 2 のようにその距離データの相対値を吸気率と定義した。 

ここである吸気率を再撮影閾値として設定し、それ以下の吸気率のフレームを「再撮影必要」、それよ

り吸気率が高いフレームを「再撮影不要」として各フレームに正解ラベルを付けた。そして胸部動態撮影

1検査で得られる300フレームを、胸部X線画像300枚として利用しCNNの学習データとした。 

学習を行ったCNNに対して通常の胸部X線画像を入力することで、通常の胸部X線画像に対しても再撮影

の要否判定が行われる。 

図 2．学習データの作成（再撮影閾値を吸気率 75％に設定した場合） 

 

3．検証 

 CNN を用いて胸部 X 線画像の吸気率に注目した再撮影要否の判定が可能であるか確認するため、18 症

例の胸部動態 X 線画像、計 5400 枚の画像を用いて検証した。本来であれば通常の胸部 X 線画像を用いて

処理精度を検証すべきであるが、通常の胸部 X 線画像では吸気率が特定できないため胸部動態 X 線画像

の各フレームを胸部 X 線画像 1 枚として用いた。また再撮影閾値は初期的な検証として吸気率 75％に設

定した。患者の体格差に対応するため画像に拡大処理を加えることで学習データ量を 5 倍に増強した。検

証方法には 6 分割交差検証法を採用し、15 症例を学習データ、3 症例をテストデータとして処理し、テス

トデータを入れ替えながら検証を行った。CNN モデルには VGG19[4]を採用し、目的タスクに対応するため

全結合層以降を変更した。図 3 に詳細を示す。学習には転移学習法[5]を利用し、ImageNet[6]にて学習さ

れた重みを初期重みとして用い、全結合層以降を胸部動態 X 線画像から作成した学習データにて追加学

習した。また過学習を防止するため学習に Early stopping を採用し、validation loss が収束したら学

習を停止するよう設定した。なお、胸部 X線画像はグレースケール画像であるため、画像を複製し 3 チャ

ンネル画像として CNN に入力した。処理環境には CPU に Intel Core i9-12900、GPU に NVIDIA GeForce 
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3090、ソフトウェアに TensorFlow および Keras を使用した。さらに CNN が評価する際に注目した領域を

可視化するため Grad-CAM［7］を用いた。 

 

図 3．VGG19 のネットワーク構造の詳細 

 

3．結果 

表1に6分割交差検証の結果を示す。正解率は0.900、F1 scoreは0.902となり高い処理精度が示された。

各症例の結果を表2に示す。正解率95％以上で処理された症例が7症例あった一方で、正解率が51.0％にと

どまる症例もみられた。正解率の高い症例と低い症例の詳細結果を図４に示す。図４上段のグラフは各フ

レームの吸気率とCNNの判定結果を示しており、マーカによってCNNの判定の正誤を示している。例えば吸

気率75％以下の画像にもかかわらず再撮影不要と誤判定された場合にはオレンジ色の×マーカで示した。

図５に各症例の代表的な吸気率の画像を示す。画像枠の色はCNNの判定結果を示しており、赤枠の場合は

「再撮影必要」、青枠の場合は「再撮影不要」と判定されたことを示す。さらにGrad-CAMによる解析結果

の一例を図6に示す。 

 

表 1． 6 分割交差検証の結果 

正解率 再現率 適合率 F1 score 

0.900 0.927 0.898 0.902 

 

表 2． 各症例の処理結果 

症例 001 002 003 004 006 007 008 009 011 

正解率[%] 90.3 92.3 96.3 93.3 96.0 90.7 98.3 72.7 90.0 
          

症例 013 015 016 018 019 021 025 026 027 

正解率[%] 99.0 51.0 97.3 93.7 98.0 95.0 90.7 80.7 94.0 
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図 4．吸気率と処理結果の詳細 

 

図 5．代表的な吸気率の画像に対する判定結果の一例 

 

 

図 6．Grad-CAM による解析結果の一例 
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4．考察 

表１より正解率、再現率および適合率は約0.9となり、CNNによる再撮影の要否判定が高い精度で可能で

あることが示された。また表2より95％を超える正解率で処理された症例が7症例ある一方で50％程度に

とどまる症例があった。図4より正解率の高かった症例008および013では、再撮影閾値の75％付近に限り

誤った判定となった一方で、症例015ではすべてのフレームに対して再撮影必要と誤って判定した。その

結果、下段に示すように特異度は0％となった。ここで図5より症例008および013では吸気率の変動ととも

に横隔膜が上下移動し、肺野の領域が大きく拡大するのに対して、症例015では横隔膜の移動量が他の症

例と比較して小さいことが示された。また図6よりCNNは横隔膜の位置や横隔膜角に注目し、判定を行った

ことが示された。これらのことより横隔膜の移動量の小ささが正解率の低下の要因として考えられる。 

 今後の課題として再撮影閾値の再設定が挙げられる。本検討では初期的検証として吸気率75％を再撮

影閾値としており，横隔膜の相対的な移動量を目安とした理解しやすい基準であったといえる。一方で7

5％という数値に根拠はない。再撮影閾値を視覚評価により患者ごとに設定した報告がある［8］が、単施

設に所属する診療放射線技師を対象とした視覚評価にとどまっている。最適な閾値の決定や再撮影基準

の明確化が今後の検討課題である． 

 

5．結論 

胸部 X 線画像の吸気率に着目した再撮影要否の自動判定を試みた。検証の結果、90％の正解率で処理が

行われ、提案手法の有効性が示された。 
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診療放射線技師からみた ER で活躍する AI 

市立四日市病院 医療技術部 中央放射線室 倉谷 洋佑 

はじめに 

 近年の AI（Artificial Intelligence：人工知能）の発展と進化は目覚ましく, 診療放射線技師として身近な医用画

像の分野においても多くの応用技術が導入されている. AIによって撮影画像を高分解能・低ノイズにすること, 角

度を一定にすること, 体動の影響を軽減できることなどは読影に有利に働く. また, AI による肺結節の検出・経時

比較機能や, 脳出血・脳梗塞を CT値変化から検出する機能などは, 時間のかかる読影負担を軽減し, さらには

経験の差も埋めるための一助となる. ER（Emergency Room：救急外来）向けには, 採血データの異常値を音声で

読み上げる機能などもリリースされており, AIの応用範囲には驚かされる. 現状は医師向けのAI応用技術が多い

と感じるが, 本稿では診療放射線技師の立場から, ERにおける業務支援 AIについて述べる.  

 

ER 業務と AI に求められるもの 

筆者は技師として勤続 16年目であるが, ERでの勤務中は未だに何とも言えない緊張感に包まれる. 患者が居

らずともいつ電話が鳴るかわからない状況になかなか気が抜けない. これは経験の浅い新人技師であれば尚更

であると思う. ERにはその特性上, 交通外傷や意識障害等の重症患者からふと不安になって受診する軽症患者

まで, 実に様々な患者が訪れる. 軽症に見える中に重篤な病態が潜んでいることもあり, 画像検査は無視できな

い重要な役割を担う. さらに, ERでは不慣れな検査やイレギュラーな指示も多く, 頭を悩ませるような場面も少な

くない.  

ERにおいて診療放射線技師が支援を要する場面を考えてみる. 個々の患者に応じた撮影条件や造影タイミ

ングの変更, 後処理の自動化など, 経験や勘が必要となる場面や忙しい場面に補助してくれる機能は有用であ

る. すでにワンクリックで撮影条件変更や再構成の追加ができる機能を搭載した CT 装置が登場している. 具体

的には体動の激しい患者に対して「高速撮影に変更するか？」, 外傷の患者に対して「骨条件を作成するか？」

などの選択肢を作成しておき, これらを複数選ばせることで即座の条件変更や再構成追加を実現している. 撮影

後の処理では, 自動的に OM ラインといった基準線に合わせて再構成を行い, そのまま自動で送信する機能が

ワークステーション等で臨床導入されている. スピードと正確さを要求されるER業務で, このようなサポートは大き

な恩恵である.  

撮影中に患者情報などは保護したまま先輩技師の自宅と画面共有をして通話や操作できる機能も登場してお

り, 夜間の安全な医療提供に有用である. 将来的に, 当直勤務中にあたかも先輩技師が近くに居て助言が得ら

れるような安心感を AIが再現できれば非常に理想的であると言える.  

他にも, インシデントを未然に防ぐ機能があれば有用である. 例えば装置や機械への挟み込み・衝突防止機

構, オーダーや患者間違いに対するアラート機能, ルート類の誤抜去防止機構などが存在するとありがたい. こ

うした安全機構について, 今後 AIや何らかの機能による補完がなされることを期待する.  

画像部会 
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3D-CT Angiography（CTA）撮影の問題点と支援技術の開発 

ER業務における様々な課題の中でも, 特に経験が求められる場面に焦点を当て, その一例として 3D-CTA撮

影の支援技術について述べる.  

緊急を要する病態である「脳卒中」の患者には 3D-CTA 検査が施行され, ボーラストラッキング（BT）法にて撮

影されることが多い. 頸部血管上に ROI（関心領域）を設定し, CT 値が上昇したタイミングを確認して撮影を開始

する. しかしながら, 頸部動脈はCT値が近しい組織が周囲に存在するため ROIの設定が難しい. そこで深層学

習を用いた画像生成手法の一つ Cycle-GAN（Cycle-Generative Adversarial Network）を用いて疑似的に造影

CT画像を生成する手法を開発した. Cycle-GANでは２つの画像群を訓練データとして使用することで, 一方から

もう一方へ画像変換を行うことが可能（Fig.1）であり, 単純 CT画像群と造影 CT画像群を用いて相互変換を学習

させた. 学習後の AIに, 単純 CT 画像を入力すれば, 疑似的に造影された CT 画像が出力されて頸部血管が

同定しやすくなる. この支援技術により, 撮影技師が頸部血管上に ROI を正確に配置できるようになれば撮影タ

イミングが安定し, 診断の遅れを防ぐことにもつながると考える.  

 

Cycle-GAN を用いた疑似造影画像の生成 

 前節で述べた手法により生成された疑似造影 CT画像と真の造影 CT画像, および入力に使用された単純 CT

画像を並べたものを Fig.2に示す. 単純CT画像と比較して疑似造影CT画像では頸部血管にコントラストがつき

判別しやすいことがわかる. 単純 CT 画像と疑似造影 CT 画像に対して, 頸部血管上に ROI を設置するテストを

診療放射線技師 10 名により実施した. 単純 CT 画像での正解率 34.5%に対して, 疑似造影 CT 画像では 45.5%

となり, 本手法を用いた方がより正確に ROI 設置が可能であることが示された. 現状, 疑似造影 CT 画像の生成

はデスクトップ PCによる処理が必要だが, 理想的にはスマートフォンなどで頸部 CT 画像を撮影することで簡便

に疑似造影 CT 画像に変換できるアプリとして実用化されることが望ましい. さらに将来的には CT 装置自体にこ

の機能が搭載されて BT 法に利用できると一層有用である. 

 

医療に「余裕」を生み出す AI 

少子高齢化・医療の高度化・働き方改革などで業務が増加しているが, 材料費や光熱費など経営コストの上昇

もあり, 容易に増員できない状況がみられる. 従来と同レベルの医療を提供し続けるためには医療従事者に「余

裕」を生み出す仕組みが必要不可欠であると考える. 技師に対する業務補助AIは未だ多くないが, 現場には「こ

うすれば業務が楽になる」, 「間違えを防げる」というニーズが数多く存在する. あまりにニッチな領域では企業開

発は入らないかもしれないが, 技師自らＡＩ技術を開発する動きも増えてきている. 胸部単純撮影や人工膝関節

の再撮影判定 AI, 解剖学的なセグメンテーション, 管理区域での入退室管理システムの自作などはその例であ

る. AI は時間短縮や負担を軽減する可能性を秘めており, 今後も業務支援技術の発展を期待する.  
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Fig.1  Cycle-GAN の概念図 

 

Fig.2 Cycle-GAN を用いて疑似造影 CT 画像を生成した例 
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おわりに 

かつては AIの開発や応用には高度なプログラミング能力と専門的知識が不可欠であった. しかし近年大規模

言語モデル（LLM：Large Language Model）が登場し, ハードルが下がりつつある. 今後はコードを一から記述す

る力よりも, 目的を正確に言語化してAIに伝える設計力, AIの出力結果を検証して間違いを正す力などが要求さ

れると考える. 筆者自身もそれらを身に着け, 技師業務支援 AI開発に関われたらと考えている. 最近では AIに

ついて学べる教育機関も増えてきている. ここまで読んで頂いた読者の中に, もしも興味のある方が居たならば

「思い立ったが吉日」, その門戸をたたいて指導を仰いでみてはどうだろうか. そしてそのような方々と新たな研究

や技術開発を進めることができたら幸いである.  
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放射線治療×AI の研究 

 

                             九州大学病院 廣瀬 貴章 

1. はじめに 

 放射線治療の分野において AI 技術は広く研究され，最近では臨床応用も盛んになっている．放射線治

療の流れは，一般に，治療計画画像取得，ターゲットおよびリスク臓器の輪郭描出，治療計画，患者位

置合わせ，照射の工程で実施される．これらの作業には非常に多くの時間を要し，特に高精度放射線治

療においては，輪郭描出や治療計画だけでも数日かかることが多い[1]．また，計画者による治療計画

の質のばらつきなども知られており，治療成績や患者の QOL に影響を及ぼす恐れがある[2]．つまり，

これらの一連の作業は短時間で，誰が行っても同じように高い品質で均てん化されることが望ましい．

そのために，各ステップにおいて精度の向上や自動化を目的とした AI 技術が開発されている．また，

近年では，画像などの膨大なデータを学習させる Deep learning 技術に加えて，診療情報やカルテなど

のテキストデータも組み込んだ大規模言語モデル（LLM）を用いることでさらなる精度の向上が図られ

ている． 

大きく進歩を遂げる放射線治療において，AI による支援は不可欠なものとなっており，今後もさらな

る発展が期待される．本稿では，放射線治療分野における AI 研究や実臨床における応用例などを紹介

し，解説する． 

 

2. 放射線治療分野における AI 研究の重要性 

 放射線治療分野における AI 研究の重要性は，「精度・効率・個別化」を実現するための基盤となる

点である．まず一つ目に，精度向上については言うまでもなく，放射線治療を行う上で重要な因子で

ある．治療装置の品質管理などはガイドライン等が整備され，装置の制御能力も向上したことで，高

い精度で管理されている．そのため，画像処理や輪郭描出，治療計画などに求められる精度に対する

要求は相対的に高まっており，AI 研究に期待される余地が多大にある．二つ目に，効率化，省力化に

関して，AI による自動輪郭描出やリアルタイムモニタリングなどは臨床スタッフの作業時間を大幅に

削減することが可能となる．昨今の働き方改革やタスクシフトといった社会的背景からも重要な要因

となっている．最後に，個別化について，個々の患者に最適な治療を提供するためには，予後予測や

適応放射線治療といった個別化医療が今後の放射線治療においても重要となる．予後予測には大量の

データ解析が必要であり，適応放射線治療には多くのリソースを要する．これらを実現するためには

AI 技術は不可欠である． 

AI 研究は，放射線治療を「より正確に・より効率的に・より患者個別に」進化させる鍵であり，今後

の臨床現場で不可欠な要素になると言える． 

 

 

画像部会 
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3. 放射線治療ワークフローと AI 

図 1 に放射線治療のワークフローと AI 技術との関わりを示す[3]．放射線治療では治療方針の決定か

ら治療実施，予後評価にわたり様々な過程を経て，一連の治療が行われ，それぞれのステップにおいて

AI の介入する可能性がある．Santoro らは，放射線治療分野における AI の利用について 921 編の論文

をレビューした[3]．AI の技術やカテゴリーに分類した結果，最も多く報告されている AI 研究は「深層

学習ベースの自動輪郭描出」であり，次いで，「機械学習ベースの予後予測」，「深層学習ベースの合

成画像生成」，「深層学習ベースの治療計画」，「深層学習ベースの予後予測」が挙げられた．本節で

は，これらの AI 介入事例と関連する研究をいくつかピックアップして紹介する． 

 

 

図 1．放射線治療ワークフローと AI の介入（参考文献[3]より改変） 

 

3.1 自動輪郭描出 

 自動輪郭描出は放射線治療分野において最も AI 研究が盛んな領域であり，すでに臨床導入も進めら

れている．図 2 に，深層学習モデルを用いた Synapse Radiotherapy により自動生成された臓器輪郭を

示す．短時間に良好な精度で多種の臓器輪郭が生成されていることがわかる． 

従来は，手動でターゲットやリスク臓器の輪郭を描出してきたが，この作業には非常に多くの時間を

要し，国内における調査では，IMRT 症例で平均 84.3分の時間を要していることが報告されている[1]．

そのため，自動輪郭描出の意義は大きく，これまでにも変形レジストレーション技術を用いたアトラス

ベールやモデルベースの自動輪郭描出が行われてきた．近年では，入力画像を徐々にダウンサンプリン

グ（特徴抽出）するエンコーダ部分と，デコーダ部分でアップサンプリング（画像再構築）を行う U-

Net など深層学習ベースの AI モデルが開発され，その高い精度から臨床導入が進められている．さら

に，最近の研究では，画像のみでは判断が難しい課題をクリアすべく，臨床テキストを統合したマルチ

モーダルな大規模言語モデル（LLM）が開発され，さらなる発展が期待されている． 

Nikolov らは，複数施設から収集した 663 の CT データセットを用いてトレーニングされた 3D U-Net に

よる自動輪郭モデルのパフォーマンスを評価した[4]．耳下腺，脊髄，脳幹，視神経など頭頸部領域の

21 種類のリスク臓器を対象とし，Dice 係数などの評価項目において良好な結果を示し，放射線腫瘍医
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による臨床評価においても大部分で臨床使用可能または軽微な修正で可能と判断された．外部データセ

ットによる検証でも良好な結果が得られ，高い汎化性が示された． 

一方，ターゲット輪郭の描出には，画像情報だけでなく腫瘍のステージや手術歴などの臨床情報も重

要となる．Oh らは画像情報に加えて，臨床テキストを統合した LLM ベースのマルチモーダル AI

（LLMSeg）を提案し，その有効性を検証した[5]．乳がん症例を対象とした CTV の描出において LLMSeg

は画像情報のみで学習されたモデルよりも高い Dice係数などの評価指標を示した．さらに，トレーニ

ングデータ量を減らしても LLMSeg ではパフォーマンスが維持されており，今後の実用化に向けた大き

な利点と言える．  

 

 

図 2．深層学習モデルに基づく市販ソフトウェアにより自動生成された臓器輪郭の例 

 

3.2 治療計画 

 治療計画では，IMRT など高度な専門性を要するためプランナーによる経験や施設間の差に依存するこ

とは課題の一つである．そのため，自動化，高速化といった効率性だけでなく，標準化の観点からも AI

による支援は重要である．自動治療計画の研究は，過去の治療計画を学習し，DVH の制約を予測する

Knowledge-based planning による報告が行われてきた．その後，学習した治療計画から線量分布を予測

する U-Net や GAN を用いた Deep learning モデルが開発された．さらに，近年では，学習のための大規

模なデータセットを必要とせず，人間の計画者が用いる試行錯誤のプロセスを模倣する深層強化学習

（deep-reinforcement learning: DRL）に基づくアプローチが提案されている．これにより，治療計画

最適化パラメータの自動調節が実行され高品質な治療計画が生成される． 

 Fan らは，270 症例の頭頸部がんの IMRT 治療計画を対象に，ResNet ベースの深層学習により 3 次元線

量分布を予測し，その予測線量マップに基づき線量最適化のための線量制約を作成することで，自動治

療計画を提案した[6]．自動生成された治療計画は予測された線量分布と良好な一致を示し，臨床的に

実現可能な IMRT 治療計画における自動化の可能性を示した． 
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 また，Shen らは，人間のプランナーが行う「TPS 上でのパラメータ調整作業（DVH の重みや閾値設定

など）」を、深層強化学習を用いた仮想治療プランナー（Virtual Treatment Planner Network: 

VTPN）が模倣できるかを検証した[7]．10 症例のトレーニング群で学習し，64 症例のテスト群で評価し

た結果，初期パラメータによる治療計画スコア 4.97±2.02 から，VTPN によるパラメータ調整後のスコ

アは 8.44±0.48 に改善した．少ない学習データで大幅な治療計画の品質向上を可能とする新たなアプ

ローチとして提案された． 

 

3.3 予後予測 

 予後予測については，放射線治療後の生存や再発，有害事象の発生を予測する目的で，AI 技術を用い

た研究が行われている．このような膨大なデータを解析する AI 研究においては，予後に関連しうる特

徴量をいかに抽出するかが重要となる．従来の予後予測に用いられてきた臨床データに加え，画像特徴

量やゲノム情報などがバイオマーカーとして利用されるようになり，その予測精度は向上している．ま

た，画像特徴量は，治療計画画像や診断画像をもとに解析されるため，追加の検査などを必要とせず，

非侵襲的にデータを取得することができることも利点である．このような医用画像を用いて定量的に特

徴量を抽出する研究分野は Radiomics と呼ばれ，得られた特徴量に対して機械学習などを用いて予測モ

デルを構築する研究が多く行われている．また，深層学習による研究では，入力画像から

Convolutional Neural Network（CNN）などを用いて自動的に特徴量を抽出し，予後を予測するモデル

が構築される． 

 著者らは，肺がんに対する定位放射線治療後のグレード 2 以上の放射線肺臓炎の発症について，治療

計画 CT 画像から抽出した Radiomics 特徴量を用いて，機械学習による予測モデルを構築した[8]．図 3

に予測モデル構築のワークフローを示す．その結果，治療計画 CT 画像上で 5 Gy以上照射された肺領域

から抽出した Radiomics 特徴量を用いた予測モデルの AUC は，トレーニング群で 0.871，テスト群で

0.756 と良好なパフォーマンスを示した． 

 Jalalifar らは，脳転移に対する定位放射線治療後の局所制御を予測するために，臨床データや治療

前の MRI 画像（T1-weighted および T2-FLAIR）から InceptionResNetV2 を用いて深層学習モデルで抽出

した特徴量による予測モデルを構築した[9].臨床データのみを使用した予測モデルによる AUC は 0.68

であった．一方，深層学習モデルによる AUC は最大 0.86 に向上した．また，深層学習モデルがどこに

注目して予測しているのかをヒートマップにより可視化することで，モデルの解釈性の向上が図られて

いる． 
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図 3．Radiomics 特徴量を用いた放射線肺臓炎予測のワークフロー（参考文献[8]より改変） 

 

 

4. 放射線治療における AI 研究の課題 

4.1 データバイアス 

放射線治療に関する AI モデルは，しばしば単一施設や限られた患者集団のデータに基づいて構築され

ている．そのため，施設間での撮像条件や治療方針の違い，患者背景の多様性を十分に反映できない可

能性がある．これにより，モデルの汎用性や外部検証での再現性に課題が残る． 

 

4.2 ブラックボックス性 

特に深層学習モデルでは内部の計算過程が人間に理解しづらく，「なぜその予測に至ったのか」を説明

できない場合が多い．この不透明さは臨床現場での信頼性を損ね，医師の意思決定への導入を妨げる要

因となっている． 

 

4.3 導入の障壁 

モデルを実際の臨床ワークフローに組み込む際には，システム連携の困難さや運用コスト，法規制や

責任の所在といった問題が存在する．また，医療従事者が AI の出力を理解し活用できるよう教育・訓

練体制を整える必要もある． 

 

 

 



37 

 

5. 今後の展望 

5.1 Explainable AI（説明可能な AI） 

AI モデルの予測根拠を可視化し，臨床医が結果を理解・検証できる仕組みが求められている．Grad-

CAM などの技術により，「どの特徴や画像領域が予測に寄与したか」を提示する研究が進展しており，ブ

ラックボックス性の課題解決に寄与する． 

 

5.2 意思決定支援 

AI は人間の判断を置き換えるのではなく，臨床医を補助する「セカンドオピニオン」としての役割が

期待される．リスク層別化や予後予測を提供することで，治療方針の選択や患者への説明をサポートす

ることが可能となる． 

 

5.3 個別化医療の推進 

患者ごとの臨床情報，画像情報，ゲノム情報を統合した AI モデルにより，最適な照射範囲や線量，適

応治療戦略を提示することが将来的に期待される．これにより，過小治療や副作用を回避しつつ，効果

を最大化する「精密放射線治療（precision radiotherapy）」の実現が期待される． 

 

6. まとめ 

 放射線治療における AI 研究は，これまでにない高精度の予後予測や治療最適化の可能性を拓きつつ

ある一方で，データの偏りやブラックボックス性，臨床導入に伴う制度的・実務的障壁といった課題を

抱えている．これらを克服するためには，多施設共同での大規模データの構築や，Explainable AI によ

る透明性の向上，医療従事者と AI の協働を意識した運用設計が重要となる．最終的には，臨床判断を

補完する信頼性の高いツールとして位置づけることで，個別化医療の実現と患者利益の最大化につなが

ることが期待される． 
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医療 AI の次世代を切り拓く「SYNAPSE Creative Space」 

         富士フイルム株式会社メディカルシステム事業部 米澤 帆功斗 

1. はじめに 

富士フイルムは，1999 年に SYNAPSE PACS，2008 年に SYNAPSE VINCENT1を発売し，

デジタル医用画像の可視化・解析技術を提供している．SYNAPSE VINCENT は，CT・MRI

などの断層画像から高精度な 3D 画像を描出し，解析を行うもので，放射線科をはじめ，

循環器・心血管，呼吸器，消化器，泌尿器，整形といった様々な診療科で利用されてい

る．また，AI 技術を活用した画像認識技術の開発に早くから取り組んできた．2018 年から

は新たにメディカル AI 技術ブランド「REiLI」を立ち上げ，深層学習を用いた設計と蓄積

された医用画像データを活かし，脈管系を含む様々な臓器の Segmentation を自動または

半自動で行う技術を充実させてきた． 

さらに， CT/MR 画像から臓器の自動抽出などのワークフロー支援機能を備えた読影ビュ

ーワ「SYNAPSE SAI viewer2」を開発，販売している．AI 技術を活用した代表的な機能と

しては臓器抽出およびラベリング機能，肺結節検出機能3，頭部 SAI フィルタ機能，腹部フ

ィルタ機能が挙げられる． 

一方，企業主体の AI 開発では主要臓器の抽出や主要疾患の検出などを優先的に行う傾向が

あり，希少疾患を含む患者数の少ない疾患に対しては，一般的に AI 開発が進みにくい状況

である．このような状況を改善したいという思いから，AI 開発の支援・民主化を目指した

画像診断支援 AI 技術開発を All in One でサポートするプラットフォーム「SYNAPSE 

Creative Space」 （以下 Creative Space）を立ち上げた．本稿では，Creative Space の

コンセプト，サービス概要，開発事例について紹介する． 

 
1 3D 画像解析システム SYNAPSE VINCENT /販売名：富士画像診断ワークステーション FN-7941

型/ 認証番号:22000BZX00238000 

2 SYNAPSE SAI viewer 用画像処理プログラム / 販売名：画像処理プログラム FS-AI683 型 / 

認証番号：231ABBZX00029000 

SYNAPSE SAI viewer 用画像表示プログラム / 販売名：画像診断ワークステーション用プログラ

ム FS-V686 型 / 認証番号：231ABBZX00028000 

3 肺結節検出機能/販売名：肺結節検出プログラム FS-AI688 型 / 承認番号：30200BZX00150000 

技術紹介 
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2. AI 技術の民主化を目指す「SYNAPSE Creative Space」の全貌 

深層学習を用いた AI 技術開発には様々なアプローチがある．一般的に特定タスクに対する

学習モデルの実現には，大量のデータに基づいた教師あり学習の手法が有効であり，アノテ

ーションと呼ばれる医用画像に対してラベル情報を付与した学習データを用意する必要が

ある． 

アノテーションに加え，学習過程および AI エンジンを共有・活用を支援する環境も併せて

構築し，プログラミングなどの専門知識がなくても医師や研究者が自身で画像診断支援 AI

技術を開発することが可能なクラウドサービス Creative Space を 2024 年 4 月より開始し

た．Creative Space が提供する学習エンジンは Segmentation, Detection, Classification の

３種類ある．Segmentation は領域を特定する AI モデルであり，3D-Unet に相当するネッ

トワークを用いて推論する．臓器の抽出，腫瘍領域の抽出，異常部位を特定するタスクに使

用され，dice スコアを用いて評価できる．Detection は画像中から検出対象を矩形領域

(Bounding Box)で表示する AI モデルであり，Faster RCNN をベースとした構造のネットワ

ークで構成されている．腫瘍候補など，位置のみを特定するタスクに使用され，再現率

（Recall）と精度（Precision）を用いて評価できる．Classification は指定・抽出した画像

中の領域を分類する AI モデルであり，マルチモーダル CNN をベースとした構造のネット

ワークで構成されている．画像所見に対する良悪性推定や遺伝子タイプ推定などのタスクに

使用され，正解率(Accuracy)を用いて評価できる． 

AI 開発を支援する SYNAPSE Creative Space の主な機能を作業の順序に沿って紹介する． 

a) プロジェクト管理機能 

Creative Space 各プロジェクトのトップ画面には，アノテーションの定義，アノテーショ

ン作成の進捗，学習計画や履歴，AI エンジンの性能の一覧が表示される．AI 技術開発に必

要な情報を一元的に管理することにより，煩雑な作業を直感的に管理し，プロジェクト進行

を促進する（Fig.1）． 
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Fig.1 SYNAPSE Creative Space プロジェクト管理画面 

b) アノテーション機能 

富士フイルムの SYNAPSE SAI viewer や SYNAPSE VINCENT で培った技術や画面デザイ

ン，操作性を基に開発したアノテーションビューワを利用する（Fig.2）．複数人によるプロ

ジェクト管理も想定し，大量の正解データを効率的に作成，複数人で品質を確認，担保する

機能も搭載されている．画像所見の関心領域に加えて，画像診断時に参照する臨床情報を含

めてアノテーションできる仕組みを提供している（Fig.3）． 

 

Fig.2 アノテーションビューワ 
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Fig.3 カスタマイズ可能な臨床情報の例 

c) 学習管理機能 

診断支援 AI の学習の開始から評価までを直感的な操作で実行する．まず，カレンダー上か

ら学習対象のタスクをスケジュール管理する．複数のタスクを同時に学習することも可能

である．AI 学習はノンプログラミングで実行でき，各タスクの学習の過程はリアルタイム

に可視化することができる（Fig.4）． 

 

 

Fig.4 訓練中の AI モデルをリアルタイムに可視化 

d) AI 実行および AI 推定結果を用いたアノテーション支援 

学習済み AI モデルは一覧で表示され，性能を比較しながら推論に用いるタスクを UI 上か

ら選択する．学習済みの AI モデルを用いた AI 推定結果はビューワ上で確認する．また，
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学習済みのモデルをアノテーションに活用する機能を備え，アノテーションデータ収集を

加速度的に効率化する仕組みを導入している． 

以上のように，アノテーションから AI 学習，AI 実行までを 1 つのクラウドサービス上で

完結できる．クラウドサービスであるため，高性能なサーバと開発環境設備に要するコス

トを大きく削減できる利点も持っている．本サービスも活用しながら，AI 研究・開発の加

速を強力に支援し，医療 AI 技術開発の裾野を広げる「AI 開発の民主化」の実現を目指し

ていく．さらに，医療機関や医師が開発した AI 技術を富士フイルムが製品化し，収益に応

じたライセンス料を医療機関・医師に支払う仕組みを導入している．産学が共存共栄関係

を構築できる開発を後押しし，社会実装まで可能なエコシステム実現を目指す． 

3. SYNAPSE Creative Space を用いた開発事例 

神経膠腫を対象とする AI 技術開発，画像診断による客観的な判断が難しかったハキム病診

断に関連する AI 技術開発, 副腎腫瘤の検出と分類の AI 技術開発の 3 例を紹介する． 

a) 神経膠腫の疑いのある領域を精密に抽出する AI 技術の開発 

神経膠腫（グリオーマ）は悪性の脳腫瘍で希少がんの一つであると同時に，原発性悪性脳腫

瘍の中では最も多い，臨床的に重要な腫瘍である．神経膠腫が大きくなると脳の機能が影響

を受け，頭痛，吐き気，運動機能や言語機能の障害など，さまざまな症状が起こる．現在，

神経膠腫の治療では，治療前に実施する MRI 検査にて画像を評価した後，手足の動きや言

語などの機能を温存しつつ手術で腫瘍を最大限摘出し，放射線治療や化学療法を行うこと

が一般的だ．近年，がんなどの腫瘍の観察には，MRI 画像から腫瘍領域を抽出し体積を計測

する AI 技術の活用が進んでいるが，患者数が少なく臨床データの数が限られている神経膠

腫に特化した AI 技術は無く，神経膠腫の領域や大きさを精確に把握することが難しいとい

う課題があった. そこで，国立がん研究センターは，頭部 MRI 画像から神経膠腫の領域を

抽出するアノテーション作業を効率的に行い作成したデータを AI に学習させた．これによ

り，MRI 画像から神経膠腫の疑いのある領域を精密に抽出する AI 技術を開発した．MRI 画

像から神経膠腫の疑いのある領域を精密に抽出し，抽出した領域の体積を計測できる．本技

術により，神経膠腫の治療前の画像評価を，より高い精度で行えることで，将来的に，早期

発見や診断の精度向上，放射線治療や手術などの治療計画の最適化などに役立つことが期

待できる． 

b) 脳脊髄液腔の各領域を抽出する AI 技術の開発 

ハキム病（特発性正常圧水頭症：iNPH）は，脳に水（脳脊髄液）が溜まって脳を圧迫し，

歩行障害や認知障害，切迫性尿失禁などの症状があらわれる病気である．進行性の病気で，
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症状が重くなると日常生活に介護が必要となる．「治療で改善できる認知症」と言われてお

り，脳内の脳脊髄液を排除することにより症状を改善できるが，症状が進行してから治療を

受けても，自立した生活を取り戻すことは難しいため，早期発見・早期治療が重要だ．また

ハキム病は，脳室の拡大を引き起こす疾患で，同様の症状が生じる脳委縮との判別が難しい

ことから，発見が遅れてしまうことがある．脳萎縮とハキム病を判別するのに重要な画像所

見として，くも膜下腔の不均衡分布である DESH（Disproportionately Enlarged 

Subarachnoid-space Hydrocephalus）が知られているが，DESH は医師の主観で評価され

ているため，医師によって判定が異なることが課題だった． 

そこで，名古屋市立大学は，Creative Space を用いて，DESH に関係する脳脊髄液腔の各

領域（高位円蓋部・正中のくも膜下腔，シルビウス裂・脳底槽，脳室）のアノテーション作

業を効率的に行い作成したデータを AI に学習させ，MRI 画像から脳脊髄液腔の各領域を抽

出する AI 技術を開発した[1]（Fig.5）．さらに，領域ごとの体積や領域間の体積比を算出す

ることにより，脳萎縮とハキム病を判別するのに重要な画像所見である DESH の判定に大

きく寄与し，ハキム病の診断精度向上につながることが期待できる [2]． 

 

Fig.5 脳脊髄液腔の各領域の抽出例 

（黄色：高位円蓋部・正中のくも膜下腔，水色：脳室，赤紫色：シルビウス裂・脳底槽） 
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c) 副腎腫瘤の検出と分類における AI 技術の開発およびアノテーション手法の比較検証 

副腎腫瘤は CT 検査において頻繁に発見される所見の一つであり, その有病率は 4.4%と比

較的高い値を示している [3]. これらの腫瘤のほとんどは良性であり, 悪性腫瘤（皮膚がん

や転移を含む）の割合は低いと言われている.  したがって, 副腎腫瘤を正確に検出し, 悪

性腫瘤を除外することは, 臨床診断において極めて重要な課題であるが, それらを AI 技術

で支援するシステムはまだ一般的ではなく, その開発は臨床応用を加速させる大きな一歩

と言える.  

 医療画像解析の分野では, 病変の特定・識別にあたり「セグメンテーション

（Segmentation）」と呼ばれる詳細な輪郭抽出と, 「バウンディングボックス

（Bounding Box）」による大まかな領域指定の双方が活用される. 特に CT スキャンのよ

うな 3D データにおいて, これら手法の効率や正確さを比較する研究は不足しており, その

評価は AI 技術の実用的活用を進展させる上で欠かせない.  

本研究では, Creative Space を利用し, 副腎腫瘤検出と分類を目的とした AI モデルを開発

した. 2 つの主要な手法であるセグメンテーションとバウンディングボックスを比較検証し

た結果, バウンディングボックスを用いたモデルはセグメンテーションを用いたモデルと

ほぼ同レベルの検出性能を示し, かつアノテーションに要する工数を大幅に削減できるこ

とが確認された [4]. これは実際の臨床画像解析において効率性と正確性の両立が期待で

きることを示しており, 放射線診断の質の向上に貢献すると考えられる.  

今回の研究成果は, 副腎腫瘤に対する AI 支援診断ツールの設計において, 作業の負担軽減

と高精度検出の両立が可能であることを示している. 特に Bounding Box 法による効率的

なデータ準備の実現は, 医用画像解析分野における AI 応用の普及促進に寄与する可能性が

ある. 今後は, さらに症例数を増やし多様な病変に対応することで, より汎用性の高い診断

支援システムの確立を目指すことが望まれる. 

4. SYNAPSE Creative Space を用いた医療 AI 教育支援サービスの概要と意義 

近年, 医療現場における人工知能（AI）技術の活用が急速に進む中で, AI リテラシーおよび

AI 開発スキルの教育が重要課題となっている. 特に画像診断支援 AI の開発に関しては, プ

ログラミング技術や工学的知識の習得が必要であり, これが教育機会のハードルとなって

いる. こうした課題に対応すべく, 「SYNAPSE Creative Space」を活用し，医療 AI 教育

支援サービスを導入した.  
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a) 講義内容および運用形態 

講義では, 富士フイルムが提供する実際の医用画像データセットを用いて, 画像診断支援 AI

に必要なアノテーションデータ作成からモデル構築, 評価までの開発工程をハンズオン形式

で学ぶことが可能である. さらに, 受講者のニーズに応じて講義内容やコマ数を柔軟にカス

タマイズも可能である.  

b) 教育提供における特徴 

本講義は AI の専門家が講師を担当し, 設備投資が不要なクラウドサービスを用いるため, 受

講環境の構築が容易である. さらに, 同社が所有する豊富な CT 画像データセットを活用す

ることで, 実践に即した AI 技術の習得が促進される. また, 医療 AI の最新動向に関する講

義も併設し, 2023 年度から教育機関等 6 施設にて 10 回以上の開催実績がある.  

c) 今後の展望 

医療分野における AI 技術の急速な進展と普及に伴い, AI 教育の重要性は一層高まる見込み

である. AI の基礎から応用に至る総合的かつ段階的な教育プログラムの構築と普及が求めら

れる.  

また, 医用画像などの医療データセットは個人情報保護の観点から入手が難しく, 教師デー

タの準備やアノテーション作業も労力を要するため, 実践的な教育コンテンツの整備が進み

にくいという現状がある. これらの課題を解消することは, 医療現場で AI 技術を安全かつ効

果的に活用できる人材育成のために不可欠である.  

Creative Space を利用したノーコード AI 教育支援サービスは, これらの課題に対応する試

みとして位置づけられる. プログラミング不要で扱える環境をクラウドで提供し, 実臨床デ

ータを活用したハンズオン講義を可能とすることで, 初学者でも AI 技術開発の工程を実践

的に学べる環境を整備している. 今後, このような教育支援サービスの普及が医療 AI 人材の

裾野拡大や医療現場での AI 活用促進に寄与すると期待される.  

 

5. おわりに 

Creative Space はノーコードで AI 開発の一連の流れを学べる特徴を有しており, これにより AI

開発の支援および民主化を実現している. そして, AI 医学教育の推進にも寄与できると考えてい
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る. 富士フイルムは, 医療機関や研究機関への研究開発環境の提供および AI 教育の支援を通じ

て, AI 技術のさらなる発展を推進していく.  
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新型一般撮影装置「RADspeed ProTM SR5 Version」の開発 

株式会社島津製作所 医用機器事業部 グローバルマーケティング部 柳瀬 杏子 

 

1. はじめに 

 当社の一般撮影装置「RADspeed Pro」シリーズは、パワーアシスト、オートポジショニング、上下連

動や照射野自動追随などさまざまな機能により、高い操作性や検査の効率化を実現するシステムとして、

多くの医療施設にて使用されている。一方で、医師や診療放射線技師に求められるタスクは年々高度化、

複雑化しており、被検者に気を配りながらタスクを遂行していくことが難しくなってきている。 

 今回、操作者の被検者へのケアとタスク遂行の両立を支援する新製品「RADspeed Pro SR5 Version*1」

を開発した（図 1）。本製品ではコリメータにカメラを内蔵し、カメラから得られる映像を X 線管懸垂器

や X 線高電圧装置の操作コンソール上のモニタに表示することが可能となった。本稿では、従来機から

の変更点とともに、操作者の目をサポートするカメラ機能について詳しくご紹介する。 

図 1 RADspeed Pro SR5 Version 

 

 

2. 従来機からの変更点 

 

2.1 X 線高電圧装置操作コンソール 

 X 線高電圧装置の操作コンソールはデザインを一新し、操作性に優れた 10 インチのカラー液晶タッチ

パネル方式を採用した（図 2）。管電圧の変更には大きく変更するボタンと細かく変更するボタンの両方

技術紹介 
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を備え、素早く条件変更を行うことを可能にしている。 

 また従来機で搭載していたイルミネーション機能を踏襲し、装置の状態を色でお知らせする。撮影準備

完了状態では緑、エラーが出た際には赤など、装置の状態をひと目で確認できる。 

図 2 X 線高電圧装置操作コンソール 

 

2.2 天井走行式 X 線管懸垂器 

 X 線管懸垂器の画面には、視認性に優れた 12 インチの大型液晶タッチパネルを採用した。撮影条件の

変更や照射野サイズの変更などが可能である。また、X 線高電圧装置の操作コンソールと同様のイルミネ

ーションを X 線管懸垂器にも搭載し、装置の状態を色でも確認できるようになった（図 3）。 

 X 線管懸垂器は、従来機と同様、高精度なモーター制御によりハンドル操作をアシストするパワーアシ

スト機能も搭載している。ハンドルに伝わる力をセンサーで検知し、操作力に応じて各軸のモーターを制

御するパワーアシスト機能は、当社独自の Glide Technologies によるものである。アシストレベルは操

作シーンに応じて 3 段階から選択可能で、大きく移動させたい場合は軽い力でスピーディに、細かい位

置合わせの際には精度よく、といったように場面に応じて使い分けることができる。これにより、X 線管

球のスムーズな移動操作を可能にし、操作者および被検者の負担軽減を図る。 

 また、従来から搭載しているロック解除ボタンは、X 線管球の向き（臥位・立位）に合わせてボタン表

示の向きを変更し、直感的に操作しやすいように工夫を加えた。さらに、オールフリースイッチ及びハン

ドグリップを X 線管懸垂器の下部に新しく搭載することで、背の低い方が上方退避操作をする際など、

X 線管懸垂器が高い位置にある場合でも操作しやすくなっている（図 4）。 

   

図 3 X 線管懸垂器のイルミネーション       図 4 X 線管懸垂器下部のハンドグリップ 
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2.3 ハンドスイッチやリモコンのワイヤレス化（図 5） 

 ばく射ハンドスイッチをワイヤレス化し、検査室内でレディー操作を開始しながら操作室側に出てす

ぐにばく射する、というワークフローを可能にした。ポジショニングからばく射までの所要時間を少しで

も短くすることで、検査効率の向上を図る。 

 また、従来から搭載しているオートポジショニング機能についても、操作用のリモコンをワイヤレス化

した。ケーブルの取り回しを気にすることなく、自由な位置からオートポジショニング操作を行うことが

可能になり、患者介助中や次の検査の準備中など様々な場面で活用できるようになった。 

 

図 5 ワイヤレスハンドスイッチ（左）とワイヤレスリモコン（右） 

 

 

3. カメラ機能「VISION SUPPORT」の特長 

 

 このたび新しく搭載したカメラ機能は、操作者の目をサポートすることをコンセプトに「VISION 

SUPPORT」と名付けた。コリメータに内蔵したカメラから得られる映像は、X 線管懸垂器及び X 線高電

圧装置の操作コンソール上に表示される。被検者のプライバシーを考慮し、カメラ部分を物理的に遮蔽す

るシャッターを備えている。 

 「VISION SUPPORT」は主に 3 つの機能を有し、ポジショニングから再撮影に至るまで、検査フロー

の各段階において操作者の目をサポートする。 

 

3.1 被検者の正確なポジショニングを支援「ライブビュー表示」 

 「ライブビュー表示」は、直接確認しにくい X 線検出器領域を青線で、照射野領域を黄線で、AEC（Auto 

Exposure Control）採光野を青領域でカメラ画像上に色を分けてオーバーレイ表示し、被検者の正確なポ

ジショニングを支援する（図 6）。撮影ワークフローとしては、まず操作者は検査室内にて、目視に加え

X 線管懸垂器の操作コンソール上の画面で被検者の映像を確認しながらポジショニングを調整すること

ができる。そして、操作室にて X 線高電圧装置の操作コンソール上のモニタで被検者の相対的なポジシ

ョニングを最終確認した後、X 線ばく射する。この一連のワークフローにより、スムーズで正確なポジシ

ョニングを実現する。 
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図 6 ライブビュー表示機能 

 

3.2  被検者の体動による再撮影頻度を低減 「体動検出・メッセージ表示」 

 「体動検出・メッセージ表示」は、被検者の体動を画面上に緑領域で表示し、ある一定の体動を検知し

た場合はアラートを表示することで、体動による再撮影の頻度を低減する機能である（図 7）。撮影のワ

ークフローとしては、まず被検者をポジショニングした後、X 線管懸垂器の操作コンソール上の画面上の

ボタンもしくはワイヤレスハンドスイッチ操作で体動検出を開始する。そして、操作室にて操作コンソー

ル上のモニタで体動の有無を確認し、問題なければ X 線ばく射する。もし、体動が見られれば再度ポジ

ショニングを行う。この一連のワークフローにより、再撮影の頻度低減を図る。 

図 7 体動検出・メッセージ表示機能 

 

3.3  被検者のポジショニング修正を支援 「前回ポジション表示」 

 「前回ポジション表示」は、直前に行った X 線撮影時のカメラ画像を表示し確認することで、再撮影

時のポジショニングをよりスムーズに行うことができる（図 8）。頸椎正面や肩関節正面などの体位を維

持することが難しい撮影では、被検者が前回の撮影時から動いてしまっていることがある。本機能では、
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前回ポジション表示を確認することができるため、再ポジショニングを行う際の参考とすることが可能

である。 

図 8 前回ポジション表示機能 

 

 

4. おわりに 

 操作者の被検者へのケアとタスク遂行の両立を支援する、カメラ機能を搭載した一般撮影装置

「RADspeed Pro SR5 Version」を紹介した。検査室・操作室それぞれから被検者の様子を確認できるよ

うになり、検査の各段階で役立つカメラ機能により、これまで以上に被検者をケアしながらタスクを遂行

していくことが可能と考えている。 

 当社は、AI や IoT 技術を用いて X 線撮影装置に新たな付加価値を提供する「イメージングトランスフ

ォーメーション（IMX）」を推進している。IMX により、これからも医療従事者の視点に立ち、操作者お

よび被検者の負担低減を支援する製品開発を目指していく。 

 

 

*1 

販売名：診断用 X 線装置 RADspeed Pro SR5 Version 

製造販売認証番号：221ABBZX00210000 

製造販売業者：株式会社島津製作所 

RADspeed Pro, Vision Support および Glide Technology は、株式会社島津製作所またはその関係会社の

日本およびその他の国における商標です。 
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第 26回 DRセミナーに参加して 

さいたま赤十字病院 放射線科 長谷川怜音 

 

この度、第 26 回 DR セミナーに参加させていただきました。学生時代の卒業研究で DR 関連の

テーマに取り組んだことをきっかけに DR に関心を持ちました。臨床現場ではマンモグラフィの

物理特性を評価しようと試みたものの、測定方法や正解が分からず困難を感じた経験があり、画

質評価の知識向上と物理評価の理解を目的に参加を決意しました。 

 

セミナーは 2025 年 8 月 9 日（土）・10 日（日）の 2 日間、東京会場にて対面形式で開催され

ました。初日は総論、入出力特性、MTF エッジ法、矩形波チャート法の講義・演習、NNPS の講義、

データ取得方法のビデオ供覧がありました。2 日目は NNPS 演習、DQE の講義・演習、質疑応答が

行われ、事前学習として入出力特性の解説動画も配布されました。 

講義では、基本から専門的な内容まで体系的に解説いただき、理解を深めることができました。

技師歴 2 年目で未熟な自分にも分かるように丁寧に説明していただき、安心して学べる雰囲気

が印象的でした。 

 

演習では、ImageJ や Excel、Macro を用いて解析を行い、データ取得の難しさを実感しました。

その過程で、なぜその式が使われるのか、どのように結果が導かれるのかを丁寧に解説していた

だき、自己学習では理解できなかった部分を深く学ぶことができました。特に NNPS では、最初

に ImageJ や Excel で解析をしてから Macro を使用したため、Macro の便利さを実感しながら算

出の流れを理解することができました。既存のマクロは便利ですが、使用者にとって計算式など

を根本的に理解することは容易ではなく、今回の講義を通して、原理や仕組みを理解した上で活

用することの重要性を実感しました。 

 

懇親会では、全国の参加者や画像部会の役員の方々、メーカーの方々と交流する機会を得まし

た。最新のトピックから過去の取り組みまで幅広い話題に触れ、大変有意義な時間となりました。

特に、研究への熱意を語る先生方の姿が印象的でした。 

 

セミナー中で最も心に残った言葉は「とりあえずやってみる」でした。以前、マンモグラフィ

の物理評価に挑戦した際に一度は断念しましたが、今では挑戦したことに意味があったと前向

きに捉えています。今回の学びを糧に、改めて物理評価に取り組みたいと感じています。 

 

最後に、本セミナーの企画・運営にご尽力くださった関係者の皆様、講義を担当してくださっ

た講師の先生方に、心より感謝申し上げます。 

読者のページ 
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第 26回 DRセミナーを受講して 

                             筑波大学附属病院 放射線部 渡部 将典 

2025 年 8 月 9 日（土）・10 日（日）、東京都葛飾区の中央医療技術専門学校で開催された第 26 回 DR セミナ

ーに参加しました。本セミナーは、放射線技術学スキル UP シリーズ「標準 ディジタル X 線画像計測」の内容理

解をさらに深めることを目的に受講しました。 

 

開催 2 週間前、小野寺先生よりセミナー概要や入出力特性の事前学習資料、懇親会の案内がメールで届きま

した。事前学習を通じて、ImageJ の操作方法を含め、基礎的な準備を十分に整えることができました。その後、柳

田先生作成の NNPS解析プログラムのダウンロード案内があり、さらに前日にも丁寧なご連絡をいただきました。 

 

1 日目は、総論（9:50～10:10）、入出力特性の講義・演習（10:10～11:40）、MTF（エッジ法）講義・演習（11:40

～13:00）、MTF（矩形波チャート法）講義・演習（14:00～15:40）、NNPS 講義（15:55～17:00）、データ取得方法

（17:10～18:00）と進行しました。特に、東出先生・柳田先生が実際にデータ取得を行う様子を収めた動画は、テ

キストだけでは理解しづらい部分を明確にしてくれました。鏡を用いた管球と検出器のアライメント調整は、まさに

目から鱗でした。 

 

2 日目は、NNPS 演習（9:15～10:30）、DQE 講義・演習（10:45～12:15）、質疑応答（12:15～12:30）が行われま

した。NNPS 解析プログラムは解析結果が瞬時に得られ、その精度と効率の高さに感動しました。また、由地先生

から伺った NEQ と DQEの使い分けについての解説は、今後の評価方法を検討する上で大変参考になりました。 

 

1 日目終了後の懇親会では、多くの参加者が講師の先生方に積極的に質問しており、終始和やかな雰囲気で

した。講師陣の真摯な姿勢と豊富な知識・経験は、大きな刺激となりました。 

 

本セミナーは、1日の講習とは異なり、時間配分にゆとりがあり、演習中も受講者が遅れないよう講師やサポート

の先生方が細やかに配慮して進行されます。そのため、受講者の経験や知識レベルが様々でも、全員が満足で

きる内容になっていると感じました。私自身も、今回得た知識と経験を生かし、自施設での物理評価に取り組んで

いきたいと思います。 

 

最後になりましたが第 26 回 DR セミナー開催に、ご尽力くださった講師の先生方に心より感謝申し上げます。

ありがとうございました。 

読者のページ 
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部会誌『画像通信』からみた医用画像の進化論： 

過去から紐解く未来の展望 

               北海道情報大学医療情報学部 上杉正人                         

 

１．はじめに 

 1970 年代後半に創刊された画像専門部会の定期雑誌「画像通信」を振り返り、医用画像研究の約半世

紀にわたる変遷をたどってみる。最後に今後の画像に関する研究の展望について考察したい。1978 年に

発行された「画像通信」の創刊号に画像分科会会長内田先生は、この雑誌が「会員相互の気楽な通信の

場でありたいと願う」と書かれている。当時は X 線撮影技術から放射線撮影学となり画像工学と融合し

発展する時期であり、こうした中で放射線技師の技術向上と画質評価の工学的知識の啓蒙がこの部会誌

に込められていたのではないかと推測する。翌年 1979 年から年 2 回の発行が行われ、2025 年 4 月の最新

号は通巻 94 号を数えている。私たちのいつもそばにあった「画像通信」を過去から振り返りながら医用

画像の研究の変化を調べ、未来への展望を考察した。 

 さて、本稿では「画像通信」の内容を 3 つの期に分類して項を進めたい。第 1 期は 1980 年代～1990 年

代中盤である。フィルムのアナログデータからデジタルデータへの移行期である。第 2 期は 1990 年代後

半～2000 年代である。多様なデジタル画像が普及し、画質評価の深化とコンピュータによる病変検出・

診断（CAD）の台頭した時代である。最後に 2010 年代～現在の人工知能（AI）が牽引する医用画像の新

たな時代である。 

２．1980 年代～1990 年代中盤（黎明期からデジタル化への胎動：アナログからデジタルへ）  

2.1 アナログ時代の画質評価 

 創刊号では、X 線フィルムのアナログデータの画質評価の「MTF（Modulation Transfer Function）」、

「情報理論」「ＲＯＣ（Receiver Operating Characteristic）」に関する論文が紹介されている。その

後、具体的な手法が X 線写真の画質評価では粒状性について（Vol.2,No.2,1979）、ウイナースペクトル

の測定や情報伝達量（Vol.3, No.1, 1980）について掲載されている。著者も当時エントロピー解析に興

味をもち、シンチグラムを出力するマルチフォーマットカメラの出力フォーマットと収集カウントの関

係を伝達情報量から最適な条件を検討した。この時代は経験と勘で画像を生成する時代から画像を定量

化して最適な条件を検討し標準化する新しい時代にあったと考える。 

2.2 デジタル画像の画質評価 

 国内の CT の導入も 1975年からはじまり「画像通信」にも CT 画像の画質評価が掲載され、エントロピ

ーによる頭部用・全身用 CT の画質評価（Vol.3,No.3,1980）などである。さらに 1983 年には富士フィル

専門部会講座（入門編） 
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ムからFCRが発表され急速にX線フィルムからCRへデジタル化が進む。1984年の「画像通信」（Vol.7,No.1）

には「≪自由討論の集い≫―「画像について語ろう」―ディジタル・Ｘレイ・イメージィングは，どこ

まで従来の撮影法に代わり得るか」と題して、デジタル化する環境について議論が行われている。 

2.3 PACS 

 医療におけるデジタル環境が普及する中でデジタル画像の保存管理が新たな時代を築いた。1989 年に

北海道大学病院において臨床応用された 1)。当時の放射線科の入江五郎教授が主導し、NEC と共同して臨

床応用に至った。当時のサーバや端末のコンピュータの性能を考えるとかなりチャレンジであったと考

える。私が学生時代に何度か教授の部屋を訪問することがあったが、教授の部屋に続く暗い通路の両脇

に大量のフイルム袋と多くのパーソナルコンピュータ（PC）が雑然と置かれているの記憶している。教

授の講義で、あの PC は何なのかと質問すると熱く PACS につて 1 時間ほど説明したのを思い出す。入江

教授は PACS の臨床応用の 10 年前からいろいろな実験をされていたのだ。1985 年の「画像通信」

（Vol.8,No.1）には「『画像について語ろう』医用総合画像情報システム（PACS）について」と題して

信州大学の滝沢先生を座長に NEC の稲邑氏などそれぞれの立場から発表されている。また、この時代は

PC が個人でも手に入る時代であり、リーズナブルな価格で PC がだれでも使える時代になっていた。1986

年の「画像通信」（Vol.9,No.1）ではパソコンに関する技術動向、画像解析・処理について特集が掲載

されている。パソコンの性能の向上と価格の廉価化が進み、PACS の普及を推し進めたと考える。PACS に

ついては 1990 年の「画像通信」（Vol13,No.1）で詳細な特集が組まれ、稲邑先生が PACS の定義、メリ

ットとデメリットや現状について記述している

（図１）。 

 さらに 1998 年の「画像通信」（Vol.21,No.2）

に北大病院放射線科の宮坂教授が「ＰＡＣＳの構

築と今後の展開」題した教育講演の内容が記載さ

れている。臨床応用した当時のネットワークは

100Mbpsの光ケーブル（FDDI）と 10Mbosの Ethernet

で構成され、CT など 12 の機器を接続して 196GB の

光ディスクジュークボックスで非可逆圧縮で PACS

に保存していたと記載されている。システム構築

と運用の苦労が推し量られる。しかし、PACS の利

点として、データベース化することで患者情報の

紹介が容易になったこと、ソフトコピー診断にお

いて過去画像参照が容易になったこと、フィルム

保管スペースの削減などを挙げている。 

2.4 ニューロ・コンピューティング 

 人工知能の発展の歴史で 1980 年代は第二次 AI

ブームである。この当時の成果を医療へ応用する

記事が「画像通信」（Vol.16,No.1）に掲載されい
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る。1993 年にニューロ・コンピューティングの特集が組まれ、画像処理の汎化問題、X 線フィルム上の

文字認識、間質性肺疾患の鑑別診断の試みなど先進的な取り組みが発表されている。鑑別診断の試みで

は、20 種類の入力項目、中間層は 1 層、ユニット数は 6 個、学習回数は 200 回で訓練、テストにおいて

5 症例を入力した結果は確定診断と同じ識別出力を得たと報告されている。当時のコンピュータの性能を

考えると大きな成果だろう。こうした研究の積み重ねが次の CAD へと繋がっていく。 

  

3. 1990 年代後半～2000 年代（デジタル画像の定着と多様化の時代：画質評価の深化と CAD の台頭） 

3.1 画像データベース 

 1997 年の「画像通信」（Vol.20,No.1）に「画像データベース実用講座」をテーマにパソコン（Machintosh、

Apple 社）を利用した画像データベース作成と利用に関する論文が掲載されている。小規模な予算で研究

用の画像データベースや miniPACS の作成する論文である。当時のデジタル画像データをどのように整理

すべきか苦労がうかがえる。当時まだすべてのモダリティがデジタル出力されない中、ビデオ信号をキ

ャプチャして取り込む方法などが紹介されている。また、1995 年から JSRT が取り組む、共通して利用可

能な標準デジタルデータベース構築の論文も掲載されいる。胸部 Xpの腫瘍病変の画像データベースは CAD

開発と評価に重要な役割を担う。 

3.2 フラットパネル検出器の登場 

 フラットパネル検出器（FPD）の登場はその後の放射線分野に大きな変革をもたらした。胸部 Xp はも

ちろんのことマンモグラフィ、そして DR や XAなど動態検査へ普及していった。「画像通信」（Vol.22,No.1）

では 1999 年に「フラットパネル検出器を用いたディジタルＸ線システム」について、開発の現状と展望

や画質特性の論文が掲載され、2004 年（Vol.27,No.2）「ディジタル画像検出システムの画像特性に関す

る研究班報告」では画像特性とその測定方法について論じられている。2006 年（Vol.29,No.1）に『乳房

画像』をテーマに「ディジタルマンモグラフィ研究への期待と課題」について論じられている。 

3.3 Computer Aided Detection/Diagnosis（CAD）の台頭 

 画像のデジタル化の進むべき方向の一つは自動診断支援であり、これまで工学的な基礎研究がまさに

この時代に放射線分野で花開いた感がある。「画像通信」では 2002 年（Vol.25,No.1）「CAD の基礎」の

リフレッシャーコース、2006 年（Vol.29,No.1）に教育講演「コンピュータ支援診断（CAD）システム」、

2007 年（Vol.30,No.1）教育講演「CT コロノグラフィとコンピュータ支援診断」と「大腸検査のための

新しい画像処理から CAD まで」をテーマに議論されている。2008 年（Vol.31,No.1）教育講演

「Computer-aided Diagnostic Schemes for Lung Nodules in Chest Radiology」と「胸部コンピュータ

支援診断（CAD）の高度化と将来」をテーマに 6 名の演者で議論されている。このように 2000 年の初め

は CAD の研究が最盛期であった。 

3.4 画像処理コンテスト 

 画像のデジタル化、パソコンの性能の向上とパソコン上で稼働する画像処理ツールや開発環境が整う

ことで、画像処理や分析のすそ野は確実に広がった。こうした背景に 2000 年に画像分科会では「第 1 回

画像処理コンテスト」を開催した。基礎的な画像処理技術の初学者を対象とした部門 1 と実践的な CAD
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技術の研究者を対象とした部門２からなっていた。画像処理や CAD にるいて会員に広く関心を持っても

らうコンテストの役割は大きい。第 1 回の部門１の課題は対象画像の病変を NIHimage などを使い明瞭か

つ正確に描出する課題であり、部門２は対象画像の肋骨の輪郭を C 言語などを用いて抽出するものであ

った。部門１では 8 名の応募があり著者が所属する北海道医用放射線情報研究会の赤田氏が優勝した。

1980 年から続く本研究会の輝かし実績を得ることができた。 

4. 2010 年代～現在（AI 時代の到来と医用画像の新たな地平：データと AI が牽引する進化） 

1980 年代、第二次 AI ブームにおいて誤差逆伝播法が開発され AI の発展が期待された。しかし多層ネッ

トワークは期待した結果が得られなかった 2）。そもそも質の良い大量のデータを収集してデータセット

を構築することが困難な時代であった。その後、多層ネットワークでも性能を向上できる技術―ReLU に

代表される活性化関数の改善、過学習を布石汎化性能を高めるドロップアウト、バッチ正規化や重み更

新アルゴリズム Optimizer の改良（Adam や RMSprop など）―が開発されたことで深層学習がブレークし

第三次 AI ブームが到来する。また、デジタル医用画像を保管する PACS の存在は質の高いデータセット

を構築するために必須である。さらに並列計算を主とする深層学習の訓練において Graphics Processing 

Unit（GPU）の存在は欠かすことはできない。GPU を供給する NVIDIA 社は 1993 年に設立され数多くの GPU

カードをリリースしてきた。2010 年に発売した GTX580 を 2 枚使用してアレックス・クリジェフスキーら

は深層学習のアーキテクチャ（AlexNet）を構築（図２）し ILSVRC（ImageNet Large Scale Visual 

Recognition Challenge）にて圧倒的精度で優勝した 3）。これを機に GPU が AI 訓練の高速化に注目され、

また彼らの論文に

おいてドロップア

ウトやデータ拡張

などテクニックが

知られることにな

る。さて、「画像通

信」においても深層

学習について多く

の教育講演やシンポジウムなどの論文を掲載している。2019 年（Vol.42,No.1）「深層学習の勘所」と題

してノーコードでの深層学習と画像研究を紹介し、これから深層学習を始める初学者に対して AI 研究を

啓蒙している。同じ年の No.2 では「深層学習による画像研究の実践編」として、医用画像処理研究の最

前線、JSRT データベースではじめる Deep Learning の紹介において肺結節の検出についての論文が掲載

されている。翌 2020 年（Vol.43,No.1）は「深層学習を放射線技術研究に利用する」、2021 年（Vol.44,No.2）

には「画像研究最前線～深層学習から Radomics まで～」の講演と深層学習における検出・分類・推定な

どについてシンポジウムの内容が掲載されている。2022 年（Vol.45,No.1）は教育講演 「ディープラー

ニングの今とこれから」、「実践ディープラーニング研究」について 4 人の演者が具体的研究内容・手

法について紹介している。このようにこの領域は今後さらに発展し、画像の特徴を多次元に抽出・処理

し解析する Radiomics への発展も期待されている。また、画像領域だけでなく多の検査データやカルテ
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の記事など多の情報とも統合しマルチモーダルな学習へ、また出力も分類や推定という値に集約するの

ではなく文書を生成する方向に進むことだろう。今後の研究が楽しみである。 

5.まとめと展望 

部会雑誌「画像通信」を振り返り画像研究について 3 つの時期に分けて述べてきた。第 1 期 1980 年代～

1990 年代中盤はフィルムのアナログデータから CR、CT や FPD などデジタルデータへの移行期である。第

2 期 1990 年代後半～2000年代は多様なデジタル画像が普及し、画質評価の評価の深化とコンピュータに

よる病変検出・診断（CAD）が台頭した時代である。そして第 3 期 2010 年代～現在は人工知能（AI）が

牽引する医用画像の新たな時代は、まさに医療と AI は切り離すことのできない技術となり、発展と成長

を続きている。私たちはこうした時代の変化とともに登場する技術に対して学び続ける必要があるだろ

う。こうした技術の基礎的な学びと、実践的な方法論について「画像通信」はこれからも我々の傍にあ

り知識の泉であり続けると考える。 

 画像の発展は、本稿で述べたようにアナログフィルムからデジタル検出へと変化してきた。このよう

なハードウェアの変化とともに今後は AIを使った再構成やノイズ除去などアルゴリズムへと変化が加わ

っていくと考える。結果として出力される画像の画質は、ハードウェアの性能、データの収集条件だけ

でなく再構成する多様なアルゴリズムにより大きく依存していくだろう。こうした画像に対して正しく

画質評価することは、この画像通信が創刊された時代から変わらないだろう。 

 創刊当時と大きく異なることは、現代は自 PC 内で大量のデジタル画像を処理できることである。さら

に画質評価や画像処理、AI のプログラムを自作することも可能な時代である。1993 年に登場した DICOM

規格も当時は DICOM 画像表示のプログラムが面倒だったが、現代はライブラリを使って数行で画像表示

ができるようになった。我々は日々扱う医用画像から新しい知見を抽出するために学び、開発し、共有

する場として画像通信が発展することを祈念する。 

 

 

参考文献 

1）日本画像医療システム工業会，歴史で見る医用画像の歩み, https://www.jira-net.or.jp/vm/aetas.

html 

2) 岡谷貴之，深層学習（改訂第 2 版），講談社 

3）Alex Krizhevsky，Ilya Sutskever，Geoffrey E. Hinton，ImageNet Classification with Deep Con

volutional Neural Networks，NeurIPS Proceedings 2012 

 

※「画像通信」は本文中で出典を明示したので割愛する。 

 

https://www.jira-net.or.jp/vm/aetas.html
https://www.jira-net.or.jp/vm/aetas.html
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臨床画像を支える基礎知識： 

DR における画質と散乱線の関係 

                 金沢大学医薬保健研究域保健学系 川嶋 広貴 

１． はじめに 

 Flat panel detector や computed radiography システムは，検出器に入射した X 線をその

強度に応じたデジタル値として記録することができる．このデジタル化の恩恵は大きく，世

界的にも digital radiography (DR)が広く普及している．そのため，DR の画像形成を正し

く理解し，定量的にその性能を評価することは現代の診療放射線技師にとって必要不可欠で

ある． 

今回のテーマの一つである“画質”の一般的な定義は，その画像が検査の目的に，どの程

度効果的に使用できるかを考慮する必要があり 1，実際のところ，一意に決定することは容

易でない．しかしながら，この目的を果たすためには，質の高いデータ取得が欠かせない．

そこで，“画質”を“得られた元データの質”と考えると，散乱線が画質に及ぼす影響は極

めて大きい．X 線撮影において，散乱線を取り除くことは基本的にできないため，それをい

かに低減し，より質の高いデータを得るかが重要となる．そこで，本稿では改めて，DR の画

像形成と散乱線の関係，散乱線を物理的に低減するグリッドの役割，画像処理で散乱線の影

響を低減する散乱線補正処理について，その基礎を解説する． 

 

２． 散乱線と被写体コントラストの関係  

 X 線撮影の基本原理は，X 線強度分布の差を画像として記録することである．この X 線強

度分布の差は，透過する被写体の線減弱係数や厚みによって異なる．隣接する物体でこれら

が異なれば，透過する X 線量の比も異なるため，被写体コントラストが形成される．ここで

重要なことは，被写体コントラストが直接線（一次 X 線）でのみ形成される点である．その

上で，散乱線は，画像形成には寄与しない均一な信号分布と近似できるため，散乱線が多く

含まれるほど，被写体コントラストが低下する． 

検出器で検出された信号のうち，散乱線が含まれる割合のことを散乱線含有率（scatter 

fraction, SF）と言う．被写体コントラスト C を，一次 X 線で形成されたコントラスト C0と

散乱線含有率 SF を使って表現すると， 

𝐶 = 𝐶0 × (1 − 𝑆𝐹) 

となる．これは，本来のコントラスト C0から（1-SF）倍だけコントラストが低下することを

意味する．散乱線含有率は，被写体が厚く，また照射野が大きいほど多くなる．例えば，成

人腹部（被写体厚を 20 cm程度と仮定）の散乱線含有率は，おおよそ 80%以上と推定される．

専門部会講座（入門編） 
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これは，腹部を撮影した場合に，一次 X 線で形成されたコントラストが，散乱線によって

20％になることを示している．これより，散乱線が画質に及ぼす影響は極めて大きく，これ

らを効率的に低減することが画質を改善する上で有効である． 

 

３． グリッドの構造と役割  

 図 1 にグリッドの構造を示す．グリッドは，X 線不透過な鉛泊と X 線透過性のある中間物

質（アルミニウムやファイバー）が，交互に規則正しく配置されている．理想的には，X 線

不透過な鉛泊で散乱線を低減し，一次 X 線は中間物質部分を透過し検出器に到達する．グリ

ッドの性能に関わる主な仕様として，グリッド比とグリッド密度がある．グリッド比は，鉛

泊の高さとその間隔の比で計算され，基本的にグリッド比が大きいほど，多くの散乱線を低

減することができる．グリッド密度は，1 cm 当たりの鉛泊の数のことであり，鉛の厚さとそ

の間隔の和の逆数で計算される．グリッド密度によっては，検出器の画素ピッチとの関係で

エイリアシングエラーが発生するため，検出器に合わせて適切なグリッド密度を選択する必

要がある 2．このグリッドアーチファクトについては，空間周波数フィルタリングによるア

ーチファクト低減が有効である 3． 

 

 

図 1 グリッドの構造とグリッド比およびグリッド密度の定義 

 

 グリッドの利点は，検出器の前面に配置することで，被写体から発生した散乱線を検出器

に届く前に低減できることである．これにより，被写体コントラストが大きく改善する．一

方で，グリッドを使用すると，一部の一次Ｘ線および散乱線が低減されるため，検出器に到

達する線量が低下する．そして，この低下の度合いは，露出倍数（グリッド使用の有無によ

る線量の比）によって知ることができる． 

 

４． DR の画像形成と画質の最適化 

 DR において，グリッドを使用することが有効であるかを判断するためには，DR の画像形

成とその画質の最適化手法を正しく理解する必要がある．グリッドの欠点は，前述したよう

に，検出器に到達する線量が低下することであるため，これを根拠として，“グリッド使用

時には線量を増やす必要がある”と考えられていることが多いように感じる．しかしながら，

H

鉛

D

グリッド比 ＝ H/D
グリッド密度 ＝ 1/d+D (1/cm)

中間物質
カバー材

d
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検出器に入る線量を一定にする必要があるのは，アナログフィルムの画像形成である．アナ

ログフィルムの被写体コントラストは，フィルムに入射する線量に依存するため，画像のコ

ントラストは線量に依存することとなる．したがって，グリッドを使用し，フィルムに入る

線量が減った場合には，撮影線量を増やし，フィルムに入る線量を一定に保つ必要がある．

しかし，デジタル画像では，被写体コントラストが検出器に入る線量とは独立しているため，

その必要が無い 4．DR の画質最適化は，ノイズ（線量）とコントラストのバランスによって

決定されることとなる．これは，ノイズが多い場合であっても，コントラストが高ければ，

その分を補うことができることを意味している． 

 

５． グリッドの評価法とその解釈 

 グリッドの性能を示す指標として，選択度，コントラスト改善比，グリッド露出係数，イ

メージ改善係数が知られている．しかし，DR の画像形成理論を考慮すると，SNR improvement 

factor (SIF)が，より実用的な性能指標と考えることができる 5, 6．SIF の算出式を以下に示

す． 

𝑆𝐼𝐹 =  
(1 − 𝑆𝐹𝑔)

(1 − 𝑆𝐹)
×

1

√𝐵𝐹
 

ここで，SF はグリッド未使用時の散乱線含有率，SFｇはグリッド使用時の散乱線含有率，BF

は露出倍数である．この式は，まさに前述した DR における画質の最適化を反映しており，

グリッドの有無による散乱線含有率の変化がコントラストに関連する因子となり，画像ノイ

ズに関連する因子が露出倍数によって表現されている． 

図 2 に，SIF の測定例を示す．これは，35×35×5 cmのアクリル厚板を用いて，異なる 2

つの照射野（約 400×400 mm と約 160×160 mm）について，一般的なグリッド（グリッド比

10：1，グリッド密度 40 本，中間物質 アルミニウム）の SIF を評価した結果である．SIF は，

アクリル厚が厚くなるほど，また FOV の大きい方が高値を示した．ＳＩＦ>1.0 は，グリッド

による信号対雑音比の改善を示しており，この条件では，アクリル厚が 7-8 cm 程度で

SIF>1.0 と推定された．この結果は，DR におけるグリッドの使用において，X 線吸収による

欠点よりも，散乱線を低減する能力が優れれば結果的に X 線量を増加する必要はないことを

示している．さらに，被写体厚が 7-8 cm 以上でＳＩＦ>1.0 となることを考慮すると，ほと

んどの X 線検査において，線量増加の必要は無いと考察できる． 
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図 2 グリッドによる SNR の改善とアクリル厚の関係． 

 

また，SIF は，信号対雑音比の比率として考えられるため，(1-1/SIF2)×100％で線量低減率

を推定することもできる 5, 7．今回の結果において，被写体厚が 20 cm の時には，線量低減

率は 50%以上と推定された．実際には，アクリル厚板で推定された線量低減率をそのまま臨

床で利用することには注意が必要であるが，グリッドによる線量低減の可能性は理論的にあ

り得る．また，これについて，より実践的な場面を考えてみると，ポータブルでグリッドを

使用せずに成人の腹部を撮影したとすると，その画質はグリッドを使えば，半分以下の線量

で実現できる可能性があると解釈できる（ちなみに，逆を言うと，成人腹部の撮影を一般撮

影室でグリッドを使って行った場合，この画質をグリッドレスで得るためには，2 倍以上の

線量が必要である）． 

 

６． 散乱 X 線補正処理（画像処理） 

 一般的な散乱線補正処理は，コントラストの改善処理とノイズ低減処理で構成される(図

3)．グリッドレス撮影で取得された原画像に対して，散乱線プロファイルを推定し，それを

取り除くとコントラストはグリッドを使用したかのごとく改善する．しかしながら，この減

算により，信号レベルに見合っていないノイズが残存することとなる．そのため，このノイ

ズを効果的に低減することが散乱線補正処理の肝となる．おそらく各社で高精度なエッジ保

存型のノイズ低減技術が採用されていると思われるが，一般的に対象物のコントラストが低

い場合やノイズが顕著に多い状況では，十分な性能を発揮できない可能性がある点に注意が

必要である．また，散乱線プロファイルの推定精度やデジタル値の飽和も画像に影響を与え

ることとなる． 

以上より，散乱線補正処理を使用する＝グリッドレス撮影であるため，グリッドレス撮影

によって劣化した画質を完全に復元することは容易でなく，散乱線補正処理が実際のグリッ

ドに匹敵する画質を提供することは考えにくい．散乱線補正処理の利点は，コントラストを

改善し，グリッドのミスアライメントに起因するエラーが起こらない点である．また，グリ
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ッドレス撮影であるためポータブル撮影時に，グリッドの重さ分を軽減できる点も臨床現場

では魅力的であると考える．そのため，臨床使用においては，グリッド使用時との画質の違

いを理解した上で，利便性が優先される場面において使用することを推奨したい． 

 

 

図 3 散乱線の補正処理の概略図．コントラスト改善処理では，コントラストを改善できるが，信号

レベルに見合わないノイズが残存する．残存したノイズをノイズ低減処理で，N>N’とする． 

 

７． まとめ 

 DR における画質と散乱線の関係について，筆者なりに，これまでの経験を書き留めた．散

乱線は，その含有率の分だけ被写体コントラストを低下させる．この影響は大きく，DR の画

質改善において，グリッドを使用し，物理的に散乱線を低減することは非常に効果的である．

この際，“グリッド使用時には線量を増やす必要がある”という短絡的な考え方ではなく，

DRの画質の最適化手法に基づき，グリッド使用の利点と欠点を明確することが重要である．

また，SIF がその実用的な指標であることを示した．散乱線補正処理については，その性能

と利便性のトレードオフを理解した上で，臨床で活用されることを期待したい．最後に，タ

イトルにもあるとおり，本稿が，臨床画像を支える基礎知識として，一人でも多くの方の役

に立つのであれば幸いである． 
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関西画像研究会の現在地 

関西画像研究会代表幹事 東近江総合医療センター放射線科 藤﨑 宏 

 

はじめに 

 関西画像研究会は 1981 年に発足し，本年（2025 年）で 45 年目を迎えます．長い歴史を有する研究会です

が，「画像通信」へは 2015 年 3 月号において「関西画像研究会 100 回開催を迎えて」と題して岸本健治前代表

幹事が寄稿されており，研究会発足の背景や沿革，活動内容等はその稿にて紹介されております．そこで，今回

は 100 回までの研究会の歴史は割愛させていただき，関西画像研究会 100 回開催から現在までを振り返り，本

研究会の現在地を紹介させていただきます． 

 

関西画像研究会 100 回記念大会について 

 ちょうど 10 年前，関西画像研究会 100 回記念大会が開催されました．100 回

に因んで 100 ページを目指して記念誌を発刊し，全国各地から 100 名を超え

る多数の参加者を得て，成功裏に終えました．記念講演会では，研究会にゆか

りのある当時熊本大学大学院の白石順二先生（現福岡国際医療福祉大学）や

大阪大学大学院の石田隆行先生をお招きし，ご講演いただきました．ご存じの

とおり，その後お二方は学会の代表理事となられ，100 回記念大会に後から花

を添えていただく形となり，改めて感慨深い記念大会だったと思い返したりして

おります． 

 

関西における 2 度の DR連合フォーラム開催について 

 2017 年に発足した DR連合フォーラムについては，國友博史先生（現藤田医科大学）が「画像通信」2018 年４

月号にその背景と第１回開催（金沢）の詳細を記されております．その後の報告として，第 2 回（2018 年）と第 5

回（2024 年）は大阪の地で開催されました．大阪では，同じ関西地区で互いに切磋琢磨してきた関西地区 CR研

究会との共催という形をとり，お互いの持ち味を存分に発揮し

ました．第 2 回では，「ディジタル画像の基礎を学び，上手く使

いこなそう！」をテーマに掲げ，全国の各研究会から演題を出

していただくよう呼びかけたところ，8 演題の登録があり，いず

れも論文化されるような素晴らしい演題ばかりでした．また講演

会では金沢大学大学院の市川勝弘先生をお招きし，多数の

参加者を得ました． 

第 5回（2024 年）では，関西地区 CR研究会の中前光弘前

大学/研究室/研究会紹介 
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代表が，日本放射線技術学会第 68 回近畿支部学術大会の大会長を務められたこともあり，その学術大会と同

日同場所で第 5回 DR 連合フォーラムを開催しようと企画しました．参加者は同じ日に同じ場所で 2つの学術集

会に参加することができるということで，お互いの集会で相乗効果が得られるよう配慮しました．フォーラムでは「AI

技術の DR 画像への応用」をテーマとし，獨協医科大学病院の木村友昭先生，瀬崎英典先生，さらに済生会川

口総合病院の森先生をお招きし，ご講演いただきました． 

第 6回 DR連合フォーラムは，代表世話人を鈴鹿医療科学大学の東出了先生として 2026 年 2 月 28（土）に

名古屋市立大学病院で開催される予定であり，是非ともご参加いただけますようお願いいたします． 

 

コロナ禍の影響について 

 全世界に影響を及ぼした COVID-19 は本研究会にも暗い影を落としました．2019 年 12 月の第 109 回関西画

像研究会開催を境に，研究会の活動は中断を余儀なくされ，2020 年から 2023 年の約 4 年もの間，研究会は開

催されることはありませんでした．Web 開催なども検討されましたが，研究会が目指しているざっくばらんな討論は

困難であろうと断念しました．そして残念なことに，コロナ禍の期間中，21 年の長きにわたって本研究会を牽引し

てこられた岸本健治代表幹事の勇退が表明されることとなり，メール連絡によりひっそりと代表幹事の交代が伝え

られました． 

 

第 111 回関西画像研究会岸本代表卒業記念大会について 

 2025 年 3 月 8 日（土）の第 111 回研究会は，岸本前代表幹事

の卒業記念大会として開催いたしました．「43 年間の放射線技

術学研究を振り返って」と題した岸本先生のご講演は，まさに日

本の放射線画像研究の歴史を紐解く内容であり，後進が目指す

道しるべとなるような講演でもありました．中でも，フィルム/スクリ

ーンからディジタルへ時代が変わりゆく中において，減らせるは

ずの被ばく線量（胸部）が増えてしまっている現状を今も憂いて

おり，今後は AI によるノイズ低減技術により被ばくが低減される

ことを願っておられる姿が印象に残りました．また同日には岸本

先生によるご指名講演として，大阪大学大学院の山崎明日美先

生（現神戸常盤大学）に「医用画像 AI 研究への誘い」と題する

ご講演をいただき，今後の画像研究において AI の果たす役割

が大きくなることを予想せざるを得ない記念大会となりました． 

 

今後の関西画像研究会について 

 今後の研究会の活動方針としては，AI 研究も大きなテーマではありますが，基本的な技術も大切にしなければ

良い研究はできないということで，過去に扱われたテーマについて再検討をしております．第 112 回（2025 年 7

月 19 日開催）では「散乱線対策について再考しよう！」と題し，実グリッドと仮想グリッドにおける現在地を確認

し，再検討しました．第 113 回（2025 年 11 月 29 日予定）ではテーマを「X線画像の評価方法を楽しく学ぼう！
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（仮題）」とし，これから研究し始めようとしている若い人たちや学生さんにも聞いていただけるような内容を企画い

たしました．次は，AI 研究をテーマに企画する予定であり，これらが関西画像研究会の現在地となります． 

 

おわりに 

当研究会の伝統として，研究会終わりには，幹事と参加者がともに意見交換会を行っているのですが，この意

見交換会ではとても情報が多く，これをメインに参加しているという人もあり，複雑な心境です．代表は交代しまし

たが，ぜひともこの伝統は受け継いでいきたいと考えております．その良き伝統を受け継ぎ，第 111 回岸本代表

卒業記念祝賀会時の写真および，いつも支えていただいている幹事紹介のリストを添えて稿を終えます．本研究

会へご支援いただいている皆様からの変わらぬご指導ご鞭撻のほど，よろしくお願いいたします． 

 

 

 

関西画像研究会幹事紹介（2025年 9月現在） 

  氏名 所属 

代表幹事 藤﨑 宏 東近江総合医療センター 

副代表幹事 日高 国幸 大阪大学医学部附属病院 

副代表幹事 榎本 善文 大阪国際がんセンター 

幹事 田中 克尚 大阪公立大学医学部附属病院 

幹事 家永 晃功 大阪公立大学医学部附属病院 

幹事 奈良澤 昌伸 大阪公立大学医学部附属病院 

幹事 野間 和夫 滋賀医科大学病院 

幹事 青木 和好 星ヶ丘医療センター 

幹事 北村 一司 天理よろづ相談所病院 

幹事 三輪 和彦 奈良県立医科大学病院 

幹事 伊泉 哲太 大阪急性期・総合医療センター 

幹事 今村 光宏 関西電力病院 

幹事 服部 翔太 近畿大学医学部附属病院 

幹事 板野 未侑 大阪市立総合医療センター 

幹事 竹綱 猛 大阪市立総合医療センター 

幹事 髙木 聡志 森ノ宮医療大学 

幹事 山崎 明日美 神戸常盤大学 
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ISMRM & ISMRT2025 参加報告 

            札幌医科大学附属病院 放射線部 赤塚 吉紘 

 

１．はじめに 

 2025 年 5 月 9 日〜15 日にハワイ・ホノルル（図 1）で開催され

た International Society for Magnetic Resonance in Medicine 

(ISMRM) & International Society for MR Radiographers & 

Technologists (ISMRT) Annual Meeting & Exhibition に参加し

ましたので報告します。 m3.com に掲載されている山田 惠 先生

（京都府立医科大学）の ISMRM2025 印象記にも記載されている通

り、演題登録数はこれまでの最多であった 2018 年パリ大会の 

6,788 本を大幅に上回り、8,000 本を超えて過去最高となりまし

た。それに伴い、採択率は例年より約 10% 低下し、65% だったと

のことです。参加登録者数は約 5,000 人と標準的な水準で、2017 

年ハワイ大会（5,623 人）とほぼ同程度でした。なお、参加者数が

伸び悩んだ要因のひとつとして、当時のトランプ政権による影響

が指摘されていました。 

２．ISMRM & ISMRT の参加登録 

 国際学会の参加費は総じて高額で

あり、ISMRM & ISMRT も例外ではあり

ません。ただし、参加登録には複数の

区分が設けられています（図 2）。たと

えばフル日程で参加する場合、ISMRT 

会員として登録した場合の登録費は 

720 ドルで、非会員として ISMRM に登

録する場合の 1,660 ドルと比べると、実に 940 ドルの差があります。つまり、ISMRT の会員となり ISMRT 

経由で参加登録すれば、費用を大幅に抑えることができ、経済的にも非常に有利です。ISMRT の年会費に

ついては、本原稿執筆時点で年間 110 ドルですが、3 年分を一括払いすると 315 ドルとなり、割引が

適用されてさらにお得です。加えて、会員特典として各種 Study Group の Virtual Meeting への無料

参加やアーカイブ動画の視聴が可能であり、学習や情報収集の機会が広がる点も大きな魅力といえます

(https://www.ismrm.org/smrt/membership/)。今後、国際学会への参加を検討する際には、おすすめの方

法です。 

国際会議案内・報告  

 

図 1 会場（ハワイコンベンション 
センター）内の受付ロビー 

図 2 ISMRM & ISMRT の参加登録タイプ 
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３．発表内容 

 私の発表は、ISMRT プログラムの Multilingual Session: Japan において “What is Needed for a 

Comfortable Musculoskeletal MRI Examination?” というタイトルで講演する機会をいただきました。

本発表の一部では、整形領域における MRI 検査において Time to performance の重要性について述べ

ました（図 3）。会期中には、ISMRM の別セッションで自分と同じ課題意識を持つ発表を聴講すること

ができ、その内容に大変感銘を受けました。学会参加ならではの醍醐味を実感するとともに、当該研究

がすでに論文化されていることを知り、後日抄読会で取り上げる機会を得ました。その一部を図 4 に示

します。この論文（Dana J. Lin et al., J. Magn. Reson. Imaging, 2024）では、MRI 検査の効率化と

価値向上の観点から、検査時間を三つに分類する枠組みが提示されていました。具体的には、画像取得

中のように患者に直接的な利益をもたらす時間を「付加価値時間」とし、コイル準備やテーブル移動、

検査室清掃といった患者に直接的な利益はないものの検査遂行に不可欠な時間を「ビジネス付加価値時

間」と定義していました。さらに、待合室での待ち時間や撮像音がしていない時間など、付加価値を生

まない時間を「非付加価値時間」と位置づけ、これらを明確に区別することで検査効率を客観的に評価

することの重要性が強調されていました。 

   

４．最後に 

 学会参加を通じて得られた学びや出会いは、私にとって大きな財産となりました。最新の知見や研究

動向に触れることで自身の視野を広げるとともに、同じ志を持つ研究者との交流を通じて新たな刺激を

受けることができました。今後は、これらの貴重な経験を研究活動や臨床に還元し、さらなる発展に努

めてまいりたいと考えています。 

  最後に、学会参加中に業務を支えてくださった札幌医科大学附属病院放射線部の皆様に、この場をお

借りして深く感謝申し上げます。 

図 3 筆者の発表スライド

スライド 

 

図 4 Dana J. Lin, et al., J. MAGN. RESON. IMAGING 2024 より抜粋 
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画像部会委員に就任して 

           金沢大学医薬保健研究域保健学系 川嶋 広貴 

 

今年度より、画像部会の委員を務めさせて頂くことになりました金沢大学の川嶋広貴です。 

皆さんご存じのとおり、画像部会の歴代委員の先生方は、この業界のレジェンドばかりで

す。私は、この先生方に憧れ、画像部会に入会しました。そして、10 年以上の月日が経ち、自

分がまさか、画像部会の委員を務める日が来るなんて思ってもいませんでした。私自身、まだ

まだ勉強不足ではありますが、経験豊富な他の委員の先生方に指導していただきながら、部会

の活動を盛り上げていければと思っております。 

私の研究テーマは、画像計測を根拠とした臨床応用です。DR や CT 技術における画質と被ば

く、信号とノイズといったトレードオフを意識した評価を通じて、その性能を

characterization することに興味があります。この分野では、先人によって性能評価手法が確

立されており、「どうやって特性を評価するのか？」から「どうやって測定結果を臨床に応用

していくのか？」に、少しずつ焦点が変遷してきていると感じています。その中で、トレンド

を追いかけることも重要だと思いますが、高度化する検査技術を上手く臨床で活用していくた

めには、その基礎や原理の正確な理解が欠かせません。そのため、教育的内容を充実させ、土

台を作ることが画像部会の重要な仕事だと考えています。すべては患者さんのために！臨床で

役立てるために！を合言葉に、幅広い情報を学会・部会員の方々と共有し、画像部会での活動

を通じて科学技術の発展に貢献できるように努めていきます。これから、どうぞよろしくお願

いします。 

新委員紹介 
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画像部会委員に就任して 

                  岡山大学 福井 亮平 

 

2025 年度より画像部会委員の末席に加えて頂きました，岡山大学の福井亮平と申します．私自身，歴

代の画像部会の先生方が主催されてきた DR セミナーや ROC セミナーなどに参加させて頂き，多くの学

びを提供して頂きました．これらセミナーで得た知識は，私の研究活動の大きなヒントになりました．

これから画像部会委員として皆さまとお会いするには甚だ力不足ではありますが，委員としての活動を

微力ながら進めていければと考えています． 

 私は大学病院で 12 年ほど診療放射線技師として従事した後，2020 年より現職に着任しました．DR 系

の画質評価，特にトモシンセシス画像に関する研究を中心に行ってきました．また，最近では人工知能

技術や Radiomics を取り入れた研究もテーマの 1 つとしています．所属する中国・四国支部の中では定

期的にセミナーを開催し，会員の皆さまの研究活動を少しでもサポートできるよう活動を継続していま

す． 

 人工知能などの新しい技術が日進月歩で放射線診療へ導入される中で，知識やスキルのアップデート

が今まで以上に求められています．私自身が追い付いていない状況ですが，会員の皆さまと共に成長し

ていければと考えております．これから東出部会長をはじめ，諸先輩方のご指導を頂きながら部会の活

動に貢献できるよう努めて参ります．今後とも何卒よろしくお願い申し上げます． 

 

新委員紹介 
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読者のページ （コーナー名は編集部で追記するので不要） 

画像部会「研究情報サイト」のご案内 

                  岐阜大学教育学部技術教育講座 福岡 大輔                         

 

１．はじめに  

画像部会の部会ホームページでは，これまでに本誌

「画像通信」において紹介されたトピックスや，各種

医用画像データベースに関する情報，プログラミング

に関する情報などを集約し情報提供を行う「研究情報

サイト（http://imgcom.jsrt.or.jp/research/）」を

2017 年 11 月に開設いたしました（図 1）． 

研究情報サイトは，画像研究に携わる研究者や，研

究を始めてみようと考える初学者の，情報提供や情報

交換の場となることをめざしています． 

  

2. 研究情報サイトの概要 

 研究情報サイトでは，図 2 のように画像研究に役立

つ情報として，本稿の執筆時点では，以下の 3 つのテ

ーマについて情報提供を行っています． 

(1) 医用画像データベースに関する情報 

近年話題の深層学習をはじめとする画像研究におい

ては，多くの画像から共通する特徴を抽出することに

よって成り立っており，画像データベースの必要性が

高まっている．しかしながら，CAD(Computer-aided 

Diagnosis)システムの開発や性能評価の研究において

は，研究に用いる医用画像データの収集や，付随する所

見データの入手は，倫理上や個人情報の観点からも近

年では難しくなっている．そこで，研究情報サイトで

は，国内外の大学や政府機関，各種学会など公的な機関

が公開するデータベースを紹介している． 

例えば，胸部 X 線画像においては，日本放射線技術

学会標準ディジタル画像データベースをはじめ，NIH 

図 1 画像部会 HP の「研究情報サイト」 

図 2「研究情報サイト」の掲載情報 

画像部会 HP「研究情報サイト」の紹介 
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Clinical Center の Ronald M. Summers 氏らの ChestX-ray8 データベースなどを紹介している．ChestX-

ray8 データベースにおいては，症例数が患者数 30,000 で画像数も 100,000 画像と非常に豊富であるた

め，深層学習を用いた画像研究に有用なデータベースとなっている．また，画像通信 40(1)「Radiomics

に関係した文献とデータベース等の紹介」において紹介された Radiomics 研究用のデータベースとして，

The Cancer Imaging Archive(TCIA)の医用画像と遺伝子の情報セット(The Cancer Genome Atlas (TCGA))

を研究情報サイト上で紹介している． 

 

(2) プログラミングに関する情報 

  画像処理プログラミングに関する情報として，画像通信 35(2)に紹介された GUI（Graphical User 

Interface）による画像処理ソフトウェア開発の基本となる「C#プログラミングによる画像表示ソフトの

作成（超初心者編）」のソースコード一式や，画像通信 35(2)において紹介されている OpenCV（Open source 

Computer Vision library), 画像通信 32(1)「CAD のための統計解析の資料」に紹介されている統計解析

ソフト R（The R Project for Statistical Computing）を掲載している．また，医用画像を取り扱う上

で必要となる DICOM フォーマットに関する情報として，ソフトウェア開発に有益な DCMTK(Dicom 

ToolKit)に関する情報と，日本画像医療システム工業会（JIRA）が公開している DICOM 規格書（日本語

版）へのリンクを紹介している． 

 

(3) 論文作成（文献検索など）に関する情報 

 画像通信 31(2)「論文作成に役立つサイトやソフト,書籍の紹介」において紹介された米国立医学図書

館内の NCBJ がインターネット上で提供している生命科学分野の文献検索システム PubMed や，Google 

Scholar について掲載している． 

 

3. 今後の活用と情報提供のお願い 

 「研究情報サイト」は，本誌「画像通信」の誌面に掲載される記事を，インターネット上のディジタル

コンテンツとして補足する機能を担い，誌面上では提供できないソフトウェアの配布や，ソースコードな

どの提供など，画像研究に役立つ情報を幅広く配信してゆきたいと考えています．また，医用画像データ

ベースに関する情報など，医用画像に関する研究者の情報共有・提供の場として今後活用してゆきたいと

考えています． 

現在，サイト上に掲載されている掲載内容のほかにも有益な情報がありましたら，「研究情報サイト」

のページ下部にあるコメント欄に情報をお寄せください． 
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画像部会入会のご案内 
 

医療には，X 線画像，CT，MRI，US，核医学画像，そして放射線治療用画像など，様々な画像が利用され

ています．画像部会は，これら全ての画像を対象とし，そのイメージング技術，画像評価，画像処理・解

析，コンピュータ支援診断（CAD）に関する新しい知識や技術の習得を目的とした活動を行っています．

よって，診断，治療，核医学などの専門領域を問わず，多くの学会員の皆さまに入会し，参加して頂くこ

とができます． 

春と秋に開催される学術大会においては，話題性が高く学術的価値の高い教育講演とシンポジウムを

開催しています．このシンポジウムでは，企画されたテーマの第一線の研究者らに問題提起や話題提供を

して頂いた上で，会員の皆さんを交えた討論を行い，新しい知識や技術の有用性や問題点を共有していま

す．その他，地方部会の協力を得ながら，医用画像処理プログラミングセミナー，DR セミナー，ROC セミ

ナーおよび臨床画像評価セミナーを開催して，必要な基本知識と技術の普及を図っています．こういった

活動を通して，会員の皆さんが画像研究の新しい風を肌で感じたり，学術レベルの向上や技術の臨床への

還元をして頂けるようになります．また，活動案内や情報は，学術大会前にお届けしている画像部会雑誌

「画像通信」（学術雑誌 ISSN コード付）に掲載しています．学術雑誌である「画像通信」には，教育講演

やシンポジウムの内容，注目されている技術の紹介，専門家による文献紹介，日本各地の研究室や研究会

の紹介，国際会議出席者の体験記など，参考になる記事が多数掲載されており，画像に興味を持つ会員に

とって非常に魅力的な専門雑誌となっています．  

画像部会は医療で広く利用されている画像に関する理解を深め，医療の進歩に寄与したいと考えてい

る方に入会して頂き、共に学んでいきたいと思っています．また，すでに会員の方も，是非画像にこだわ

りを持つ周辺の方々に声をかけて入会を促して頂けるようお願いします． 

 

［入会資格］日本放射線技術学会の会員であること． 

［入会方法］Web 上（https://www.jsrt.or.jp/data/procedure/bunka-01/）から，お申し込み下さい． 

 

［年会費と会員特典について］ 

1．専門部会の会員登録システムと年会費の変更について 

 2022 年より専門部会の入会については，正会員・シニア会員は 1 つ目の年会費は無料ですが，2 つ

目以降は各 1,000 円が別途必要です．学生会員は会費免除で全ての部会に自動的に登録されます．  

2．専門部会誌の電子化について 

 現在，専門部会員の皆様に冊子体で届けている専門部会誌を，2015 年 3 月発刊分より全面的に電子

化します．電子化により印刷製本費や郵送費が軽減できますので，専門部会活動の充実に充てたいと

考えています．なお，電子版の閲覧方法については，追ってお知らせします．     



編集後記 

 最近、「トヨタ生産方式」に関する書籍を読み直す機会がありました。そこに書かれてい

た“問題が見える化された状態こそ改善の出発点”という言葉が妙に頭に残っています。学

会や部会も同じで、何となく続けるだけではじり貧になります。今のやり方のままでいいの

か、どこにムダや滞りがあるのかを直視して、少しずつでも形を変えていく必要がある――

そんなことを思いました。 

 正直、学会全体が過渡期にあるのは否めません。以前と比べて参加者層や開催形式も変わ

ってきました。でも、その変化を“危機”ではなく“チャンス”と捉えられるかは、気持ち

次第だと思います。画像部会だからこそできるテーマ、現場の声を生かした企画、他分野と

のつながり…。やり方は色々あると思います。 

 今回、あらためて「動き続けること」が大事だと感じました。放射線技術学の根底にある

のは患者への還元だと思います。だからこそ、時代や現場の状況に応じて「カイゼン」を重

ねていくことが責務だと考えています。 

 

（RY記） 
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